
Text Analytics Toolbox™
Reference

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Text Analytics Toolbox™ Reference
© COPYRIGHT 2017–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
September 2017 Online Only New for Version 1.0
March 2018 Online Only Revised for Version 1.1 (Release 2018a)
September 2018 Online Only Revised for Version 1.2 (Release 2018b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions — Alphabetical List
1

iii

Contents

Functions — Alphabetical List

1

abbreviations
Table of common abbreviations

Syntax
tbl = abbreviations

Description
tbl = abbreviations returns a table of common English abbreviations.

Examples

Table of Abbreviations

View a table of abbreviations. You can use this table to detect abbreviations and
sentences when using addSentenceDetails.

tbl = abbreviations;
head(tbl)

ans=8×2 table
 Abbreviation Usage
 ____________ _______

 "aba" regular
 "abc" regular
 "abf" regular
 "abh" regular
 "abohm" regular
 "abs" regular
 "abt" regular
 "abv" regular

1 Functions — Alphabetical List

1-2

Output Arguments
tbl — Table of abbreviations
table

Table of abbreviations. The addSentenceDetails and splitSentences functions, by
default, use this table to detect sentence boundaries.

The table has two variables:

• Abbreviation – Abbreviation, specified as a string
• Usage – Type of abbreviation, specified as a categorical scalar

The following table describes the possible values of Usage and the behavior of
addSentenceDetails and splitSentences when observing abbreviations of these
types.

Usage Behavior Example
Abbreviation

Example Text Detected
Sentences

regular If the next word
is a capitalized
sentence starter,
then break at
the trailing
period.
Otherwise, do
not break at the
trailing period.

appt "Book an
appt. We'll
meet then."

"Book an
appt."

"We'll meet
then."

"Book an
appt. today."

"Book an
appt. today."

inner Do not break
after trailing
period.

Dr "Dr. Smith." "Dr. Smith."

reference If the next token
is not a number,
then break at a
trailing period.
If the next token
is a number,
then do not

fig "See fig. 3." "See fig. 3."

 abbreviations

1-3

Usage Behavior Example
Abbreviation

Example Text Detected
Sentences

break at the
trailing period.

"Try a fig.
They are
nice."

"Try a fig."

"They are
nice."

unit If the previous
word is a
number and the
following word
is a capitalized
sentence starter,
then break at a
trailing period.

in "The height
is 30 in. The
width is 10
in."

"The height
is 30 in."

"The width is
10 in."

If the previous
word is a
number and the
following word
is not
capitalized, then
do not break at a
trailing period.

"The item is
10 in. wide."

"The item is
10 in. wide."

If the previous
word is not a
number, then
break at a
trailing period.

"Come in. Sit
down."

"Come in."

"Sit down."

See Also
addPartOfSpeechDetails | addSentenceDetails | tokenDetails |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”

1 Functions — Alphabetical List

1-4

Introduced in R2018a

 abbreviations

1-5

addPartOfSpeechDetails
Add part-of-speech tags to documents

Syntax
newDocuments = addPartOfSpeechDetails(documents)
newDocuments = addPartOfSpeechDetails(documents,'RetokenizeMethod',
method)

Description
newDocuments = addPartOfSpeechDetails(documents) detects parts of speech in
documents and updates the token details. The function, by default, retokenizes the text
for part-of-speech tagging. For example, the function splits the word "you're" into the
tokens "you" and "'re". To get the part-of-speech details from newDocuments, use
tokenDetails.

newDocuments = addPartOfSpeechDetails(documents,'RetokenizeMethod',
method) also specifies the method to use for retokenizing the documents.

Examples

Add Part-of-Speech Details to Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

1 Functions — Alphabetical List

1-6

View the token details of the first few tokens.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×5 table
 Token DocumentNumber LineNumber Type Language
 ___________ ______________ __________ _______ ________

 "fairest" 1 1 letters en
 "creatures" 1 1 letters en
 "desire" 1 1 letters en
 "increase" 1 1 letters en
 "thereby" 1 1 letters en
 "beautys" 1 1 letters en
 "rose" 1 1 letters en
 "might" 1 1 letters en

Add part-of-speech details to the documents using the addPartOfSpeechDetails
function. This function first adds sentence information to the documents, and then adds
the part-of-speech tags to the table returned by tokenDetails. View the updated token
details of the first few tokens.

documents = addPartOfSpeechDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×7 table
 Token DocumentNumber SentenceNumber LineNumber Type Language PartOfSpeech
 ___________ ______________ ______________ __________ _______ ________ ______________

 "fairest" 1 1 1 letters en adjective
 "creatures" 1 1 1 letters en noun
 "desire" 1 1 1 letters en verb
 "increase" 1 1 1 letters en noun
 "thereby" 1 1 1 letters en adverb
 "beautys" 1 1 1 letters en verb
 "rose" 1 1 1 letters en noun
 "might" 1 1 1 letters en auxiliary-verb

 addPartOfSpeechDetails

1-7

Get Part of Speech Details of Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
 "恋に悩み、苦しむ。"
 "恋の悩みで 苦しむ。"
 "空に星が輝き、瞬いている。"
 "空の星が輝きを増している。"
 "駅までは遠くて、歩けない。"
 "遠くの駅まで歩けない。"
 "すもももももももものうち。"];
documents = tokenizedDocument(str);

For Japanese text, you can get the part-of-speech details using tokenDetails. For
English text, you must first use addPartOfSpeechDetails.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×7 table
 Token DocumentNumber LineNumber Type Language PartOfSpeech Lemma
 _______ ______________ __________ ___________ ________ ____________ _______

 "恋" 1 1 letters ja noun "恋"
 "に" 1 1 letters ja adposition "に"
 "悩み" 1 1 letters ja verb "悩む"
 "、" 1 1 punctuation ja punctuation "、"
 "苦しむ" 1 1 letters ja verb "苦しむ"
 "。" 1 1 punctuation ja punctuation "。"
 "恋" 2 1 letters ja noun "恋"
 "の" 2 1 letters ja adposition "の"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

1 Functions — Alphabetical List

1-8

method — Method to retokenize documents
'part-of-speech' (default) | 'none'

Method to retokenize documents, specified as one of the following:

• 'part-of-speech' – Transform the tokens for part-of-speech tagging. The function
performs these tasks:

• Split compound words. For example, split the compound word "wanna" into the
tokens "want" and "to". This includes compound words containing apostrophes.
For example, the function splits the word "don't" into the tokens "do" and
"n't".

• Merge periods with preceding abbreviations. For example, merge the tokens "Mr"
and "." into the token "Mr.".

• Merge runs of periods into ellipses. For example, merge three instances of "." into
the single token "...".

• 'none' – Do not retokenize the documents.

Output Arguments
newDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the sentence
details from newDocuments, use tokenDetails.

Algorithms
If the input documents do not contain sentence details, then the function first runs
addSentenceDetails.

See Also
addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | normalizeWords | tokenDetails |
tokenizedDocument

 addPartOfSpeechDetails

1-9

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”
“Japanese Language Support”

Introduced in R2018b

1 Functions — Alphabetical List

1-10

addDocument
Add documents to bag-of-words or bag-of-n-grams model

Syntax
newBag = addDocument(bag,documents)

Description
newBag = addDocument(bag,documents) adds documents to the bag-of-words or
bag-of-n-grams model bag.

Examples

Add Documents to Bag-of-Words Model

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [2x7 double]
 Vocabulary: [1x7 string]
 NumWords: 7
 NumDocuments: 2

Create another array of tokenized documents and add it to the same bag-of-words model.

documents = tokenizedDocument([
 "a third example of a short sentence"

 addDocument

1-11

 "another short sentence"]);
newBag = addDocument(bag,documents)

newBag =
 bagOfWords with properties:

 Counts: [4x9 double]
 Vocabulary: [1x9 string]
 NumWords: 9
 NumDocuments: 4

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data
into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file
names "exampleSonnetN.txt", where N is the number of the sonnet. Specify the read
function to be extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt','ReadFcn',readFcn)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet1.txt';
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet2.txt';
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet3.txt'
 ... and 1 more
 }
 UniformRead: 0
 ReadFcn: @extractFileText
 AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bagOfWords

1 Functions — Alphabetical List

1-12

bag =
 bagOfWords with properties:

 Counts: []
 Vocabulary: [1x0 string]
 NumWords: 0
 NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and
add the document to bag.

while hasdata(fds)
 str = read(fds);
 document = tokenizedDocument(str);
 bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag

bag =
 bagOfWords with properties:

 Counts: [4x276 double]
 Vocabulary: [1x276 string]
 NumWords: 276
 NumDocuments: 4

Input Arguments
bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

 addDocument

1-13

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

Output Arguments
newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bagOfWords object or a bagOfNgrams object. The type of
newBag is the same as the type of bag.

See Also
bagOfNgrams | bagOfWords | removeDocument | removeEmptyDocuments |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

1 Functions — Alphabetical List

1-14

addLanguageDetails
Add language identifiers to documents

Syntax
newDocuments = addLanguageDetails(documents)
newDocuments = addLanguageDetails(documents,'Language',language)

Description
newDocuments = addLanguageDetails(documents) detects the language of
documents and updates the token details. The function adds details to the tokens with
missing language details only. To get the language details from newDocuments, use
tokenDetails.

newDocuments = addLanguageDetails(documents,'Language',language)
specifies the language to update with.

Examples

Add Language Details to Documents

Manually tokenize some text by splitting it into an array of words. Convert the manually
tokenized text into a tokenizedDocument object by setting the 'TokenizeMethod'
option to 'none'.

str = split("an example of a short sentence")';
documents = tokenizedDocument(str,'TokenizeMethod','none');

View the token details using tokenDetails.

tdetails = tokenDetails(documents)

tdetails=6×2 table
 Token DocumentNumber

 addLanguageDetails

1-15

 __________ ______________

 "an" 1
 "example" 1
 "of" 1
 "a" 1
 "short" 1
 "sentence" 1

When you specify 'TokenizeMethod','none', the function does not automatically
detect the language details of the documents. To add the language details, use the
addLanguageDetails function. This function, by default, automatically detects the
language.

documents = addLanguageDetails(documents);

View the updated token details using tokenDetails.

tdetails = tokenDetails(documents)

tdetails=6×4 table
 Token DocumentNumber Type Language
 __________ ______________ _______ ________

 "an" 1 letters en
 "example" 1 letters en
 "of" 1 letters en
 "a" 1 letters en
 "short" 1 letters en
 "sentence" 1 letters en

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

language — Language
'en' | 'ja'

1 Functions — Alphabetical List

1-16

Language, specified as one of the following:

• 'en' – English
• 'ja' – Japanese

If you do not specify a value, then the function detects the language from the input text
using the corpusLanguage function.

This option specifies the language details of the tokens. To view the language details of
the tokens, use tokenDetails. These language details determine the behavior of the
removeStopWords, addPartOfSpeechDetails, normalizeWords, and
addSentenceDetails functions on the tokens.

For more information about language support in Text Analytics Toolbox™, see “Language
Support”.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
abbreviations | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | corpusLanguage | splitSentences |
tokenDetails | tokenizedDocument | topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Support”
“Japanese Language Support”

Introduced in R2018b

 addLanguageDetails

1-17

addLemmaDetails
Add lemma forms of tokens to documents

Syntax
newDocuments = addLemmaDetails(documents)

Description
newDocuments = addLemmaDetails(documents) adds lemma details to documents
and updates the token details. To get the lemma details from newDocuments, use
tokenDetails.

Examples

Add Lemma Details to Documents

Create a tokenized document array.

str = [...
 "The dogs ran after the cat."
 "I am building a house."];
documents = tokenizedDocument(str);

Add lemma details to the documents using addLemmaDetails. This function lemmatizes
the text and adds the lemma form of each token to the table returned by tokenDetails.
View the updated token details of the first few tokens.

documents = addLemmaDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×6 table
 Token DocumentNumber LineNumber Type Language Lemma
 _______ ______________ __________ ___________ ________ _______

1 Functions — Alphabetical List

1-18

 "The" 1 1 letters en "the"
 "dogs" 1 1 letters en "dog"
 "ran" 1 1 letters en "run"
 "after" 1 1 letters en "after"
 "the" 1 1 letters en "the"
 "cat" 1 1 letters en "cat"
 "." 1 1 punctuation en "."
 "I" 2 1 letters en "i"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | normalizeWords | tokenDetails |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”

 addLemmaDetails

1-19

Introduced in R2018b

1 Functions — Alphabetical List

1-20

addSentenceDetails
Add sentence numbers to documents

Syntax
newDocuments = addSentenceDetails(documents)
newDocuments = addSentenceDetails(documents,Name,Value)

Description
newDocuments = addSentenceDetails(documents) detects the sentence
boundaries in documents and updates the token details. To get the sentence details from
newDocuments, use tokenDetails.

newDocuments = addSentenceDetails(documents,Name,Value) specifies
additional options using one or more name-value pair arguments.

Examples

Add Sentence Details to Documents

Create a tokenized document array.

str = [...
 "This is an example document. It has two sentences."
 "This document has one sentence."
 "Here is another example document. It also has two sentences."];
documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds
the sentence numbers to the table returned by tokenDetails. View the updated token
details of the first few tokens.

 addSentenceDetails

1-21

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×6 table
 Token DocumentNumber SentenceNumber LineNumber Type Language
 __________ ______________ ______________ __________ ___________ ________

 "This" 1 1 1 letters en
 "is" 1 1 1 letters en
 "an" 1 1 1 letters en
 "example" 1 1 1 letters en
 "document" 1 1 1 letters en
 "." 1 1 1 punctuation en
 "It" 1 2 1 letters en
 "has" 1 2 1 letters en

View the token details of the second sentence of the third document.

idx = tdetails.DocumentNumber == 3 & ...
 tdetails.SentenceNumber == 2;
tdetails(idx,:)

ans=6×6 table
 Token DocumentNumber SentenceNumber LineNumber Type Language
 ___________ ______________ ______________ __________ ___________ ________

 "It" 3 2 1 letters en
 "also" 3 2 1 letters en
 "has" 3 2 1 letters en
 "two" 3 2 1 letters en
 "sentences" 3 2 1 letters en
 "." 3 2 1 punctuation en

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

1 Functions — Alphabetical List

1-22

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Abbreviations',["cm" "mm" "in"] species to detect sentences
boundaries where these abbreviations are followed by a period and a capitalized sentence
starter.

Abbreviations — List of abbreviations
string array | character vector | cell array of character vectors | table

List of abbreviations, specified as a string array, character vector, cell array of character
vectors, or a table.

If Abbreviations is a string array, character vector, or cell array of character vectors,
then the function treats these as regular abbreviations. If the next word is a capitalized
sentence starter, then the function breaks at the trailing period. The function ignores any
differences in the letter case of the abbreviations. Specify the sentence starters using the
Starters name-value pair.

To specify different behaviors when splitting sentences at abbreviations, specify
Abbreviations as a table. The table must have variables named Abbreviation and
Usage, where Abbreviation contains the abbreviations, and Usage contains the type of
each abbreviation. The following table describes the possible values of Usage, and the
behavior of the function when passed abbreviations of these types.

Usage Behavior Example
Abbreviation

Example Text Detected
Sentences

regular If the next word
is a capitalized
sentence starter,
then break at
the trailing
period.
Otherwise, do
not break at the
trailing period.

appt "Book an
appt. We'll
meet then."

"Book an
appt."

"We'll meet
then."

"Book an
appt. today."

"Book an
appt. today."

 addSentenceDetails

1-23

Usage Behavior Example
Abbreviation

Example Text Detected
Sentences

inner Do not break
after trailing
period.

Dr "Dr. Smith." "Dr. Smith."

reference If the next token
is not a number,
then break at a
trailing period.
If the next token
is a number,
then do not
break at the
trailing period.

fig "See fig. 3." "See fig. 3."
"Try a fig.
They are
nice."

"Try a fig."

"They are
nice."

unit If the previous
word is a
number and the
following word
is a capitalized
sentence starter,
then break at a
trailing period.

in "The height
is 30 in. The
width is 10
in."

"The height
is 30 in."

"The width is
10 in."

If the previous
word is a
number and the
following word
is not
capitalized, then
do not break at a
trailing period.

"The item is
10 in. wide."

"The item is
10 in. wide."

If the previous
word is not a
number, then
break at a
trailing period.

"Come in. Sit
down."

"Come in."

"Sit down."

The default value is the output of the abbreviations function.

1 Functions — Alphabetical List

1-24

Tip By default, the function treats single letter abbreviations, such as "V.", or tokens with
mixed single letters and periods, such as "U.S.A." as regular abbreviations. You do not
need to include these abbreviations in Abbreviations.

Example: ["cm" "mm" "in"]
Data Types: char | string | table | cell

Starters — Words that start a sentence
string array | character vector | cell array of character vectors

Words that start a sentence, specified as a string array, character vector, or a cell array of
character vectors. If a sentence starter appears capitalized after a regular abbreviation,
then the function detects a sentence boundary at the trailing period. The function ignores
any differences in the letter case of the sentence starters.

The default value is the output of the stopWords function.
Data Types: char | string | cell

Output Arguments
newDocuments — Updated documents
tokenizedDocument array

Updated documents, returned as a tokenizedDocument array. To get the sentence
details from newDocuments, use tokenDetails.

Definitions

Language Considerations
The addSentenceDetails function detects sentence boundaries based on punctuation
characters and line number information. For English text, the function also uses a list of
abbreviations passed to the function.

For other languages, you might need to specify your own list of abbreviations for sentence
detection. To do this, use the 'Abbreviations' option of addSentenceDetails.

 addSentenceDetails

1-25

Algorithms
If emoticons or emoji characters appear after a terminating punctuation character, then
the function splits the sentence after the emoticons and emoji.

See Also
abbreviations | addLanguageDetails | addLemmaDetails |
addPartOfSpeechDetails | addTypeDetails | splitSentences | tokenDetails |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”

Introduced in R2018a

1 Functions — Alphabetical List

1-26

addTypeDetails
Add token type details to documents

Syntax
newDocuments = addTypeDetails(documents)
newDocuments = addTypeDetails(documents,'TopLevelDomains',domains)

Description
newDocuments = addTypeDetails(documents) detects the token types in
documents and updates the token details. The function adds type details to the tokens
with unknown type only. To get the token types from newDocuments, use
tokenDetails.

newDocuments = addTypeDetails(documents,'TopLevelDomains',domains)
also specifies the top-level domains to use for web address detection.

Examples

Add Token Type Details to Documents

Convert manually tokenized text into a tokenizedDocument object, setting the
'TokenizeMethod' option to 'none'.

str = ["For" "more" "information" "," "see" "https://www.mathworks.com" "."];
documents = tokenizedDocument(str,'TokenizeMethod','none')

documents =
 tokenizedDocument:

 7 tokens: For more information , see https://www.mathworks.com .

View the token details using the tokenDetails function.

 addTypeDetails

1-27

tdetails = tokenDetails(documents)

tdetails=7×2 table
 Token DocumentNumber
 ___________________________ ______________

 "For" 1
 "more" 1
 "information" 1
 "," 1
 "see" 1
 "https://www.mathworks.com" 1
 "." 1

If you set 'TokenizeMethod' to 'none' in the call to the tokenizedDocument
function, then it does not detect the types of the tokens. To add the token type details, use
the addTypeDetails function.

documents = addTypeDetails(documents);

View the updated token details.

tdetails = tokenDetails(documents)

tdetails=7×3 table
 Token DocumentNumber Type
 ___________________________ ______________ ___________

 "For" 1 letters
 "more" 1 letters
 "information" 1 letters
 "," 1 punctuation
 "see" 1 letters
 "https://www.mathworks.com" 1 web-address
 "." 1 punctuation

1 Functions — Alphabetical List

1-28

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

domains — Top-level domains
character vector | string array | cell array of character vectors

Top-level domains to use for web address detection, specified as a character vector, string
array, or cell array of character vectors.

If you do not specify domains, then the function uses the output of topLevelDomains.
Example: ["com" "net" "org"]
Data Types: char | string | cell

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
abbreviations | addLanguageDetails | addLemmaDetails |
addPartOfSpeechDetails | addSentenceDetails | corpusLanguage |
splitSentences | tokenDetails | tokenizedDocument | topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Support”
“Japanese Language Support”

 addTypeDetails

1-29

Introduced in R2018b

1 Functions — Alphabetical List

1-30

bagOfNgrams
Bag-of-n-grams model

Description
A bag-of-n-grams model records the number of times that each n-gram appears in each
document of a collection. An n-gram is a collection of n successive words.

bagOfNgrams does not split text into words. To create an array of tokenized documents,
see tokenizedDocument.

Creation

Syntax
bag = bagOfNgrams
bag = bagOfNgrams(documents)
bag = bagOfNgrams(___ ,'NgramLengths',lengths)
bag = bagOfNgrams(uniqueNgrams,counts)

Description
bag = bagOfNgrams creates an empty bag-of-n-grams model.

bag = bagOfNgrams(documents) creates a bag-of-n-grams model and counts the
bigrams (pairs of words) in documents.

bag = bagOfNgrams(___ ,'NgramLengths',lengths) counts n-grams of the
specified lengths using any of the previous syntaxes.

bag = bagOfNgrams(uniqueNgrams,counts) creates a bag-of-n-grams model using
the n-grams in uniqueNgrams and the corresponding frequency counts in counts. If
uniqueNgrams contains <missing> values, then the corresponding values in counts
are ignored.

 bagOfNgrams

1-31

Input Arguments
documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

uniqueNgrams — Unique n-gram list
string array | cell array of character vectors

Unique n-gram list, specified as a NumNgrams-by-maxN string array or cell array of
character vectors, where NumNgrams is the number of unique n-grams, and maxN is the
length of the largest n-gram.

The value of uniqueNgrams(i,j) is the jth word of the ith n-gram. If the number of
words in the ith n-gram is less than maxN, then the remaining entries of the ith row of
uniqueNgrams are empty.

If uniqueNgrams contains <missing>, then the function ignores the corresponding
values in counts.

Each n-gram must have at least one word.
Example: ["An" ""; "An" "example"; "example" ""]
Data Types: string | cell

counts — Frequency counts of n-grams
matrix of nonnegative integers

Frequency counts of n-grams corresponding to the rows of uniqueNgrams, specified as a
matrix of nonnegative integers. The value counts(i,j) corresponds to the number of
times the n-gram uniqueNgrams(j,:) appears in the ith document.

counts must have as many columns as uniqueNgrams has rows.

lengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

1 Functions — Alphabetical List

1-32

Properties
Counts — N-gram counts per document
sparse matrix

N-gram counts per document, specified as a sparse matrix.

Ngrams — Unique n-grams in model
string array

Unique n-grams in the model, specified as a string array. Ngrams(i,j) is the jth word of
the ith n-gram. If the number of columns of Ngrams is greater than the number of words
in the n-gram, then the remaining entries are empty.

NgramLengths — Lengths of n-grams
2 (default) | positive integer | vector of positive integers

Lengths of n-grams, specified as a positive integer or a vector of positive integers.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

NumNgrams — Number of n-grams seen
nonnegative integer

Number of n-grams seen, specified as a nonnegative integer.

NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

Object Functions
encode Encode documents as matrix of word or n-gram counts
tfidf Term Frequency–Inverse Document Frequency (tf-idf) matrix
topkngrams Most frequent n-grams

 bagOfNgrams

1-33

addDocument Add documents to bag-of-words or bag-of-n-grams model
removeDocument Remove documents from bag-of-words or bag-of-n-grams

model
removeEmptyDocuments Remove empty documents from tokenized document array,

bag-of-words model, or bag-of-n-grams model
removeNgrams Remove n-grams from bag-of-n-grams model
removeInfrequentNgrams Remove infrequently seen n-grams from bag-of-n-grams

model
join Combine multiple bag-of-words or bag-of-n-grams models
wordcloud Create word cloud chart from text, bag-of-words model, bag-

of-n-grams model, or LDA model

Examples

Create Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans =
 10x1 tokenizedDocument:

 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

1 Functions — Alphabetical List

1-34

Create a bag-of-n-grams model.

bag = bagOfNgrams(documents)

bag =
 bagOfNgrams with properties:

 Counts: [154x8799 double]
 Vocabulary: [1x3092 string]
 Ngrams: [8799x2 string]
 NgramLengths: 2
 NumNgrams: 8799
 NumDocuments: 154

Visualize the model using a word cloud.

figure
wordcloud(bag);

 bagOfNgrams

1-35

Count N-Grams of Different Lengths

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

1 Functions — Alphabetical List

1-36

Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and
trigrams), specify 'NgramLengths' to be the vector [2 3].

bag = bagOfNgrams(documents,'NgramLengths',[2 3])

bag =
 bagOfNgrams with properties:

 Counts: [154×18022 double]
 Vocabulary: [1×3092 string]
 Ngrams: [18022×3 string]
 NgramLengths: [2 3]
 NumNgrams: 18022
 NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).

topkngrams(bag,10,'NGramLengths',2)

ans=10×3 table
 Ngram Count NgramLength
 _______________________ _____ ___________

 "thou" "art" "" 34 2
 "mine" "eye" "" 15 2
 "thy" "self" "" 14 2
 "thou" "dost" "" 13 2
 "mine" "own" "" 13 2
 "thy" "sweet" "" 12 2
 "thy" "love" "" 11 2
 "dost" "thou" "" 10 2
 "thou" "wilt" "" 10 2
 "love" "thee" "" 9 2

View the 10 most common n-grams of length 3 (trigrams).

 topkngrams(bag,10,'NGramLengths',3)

ans=10×3 table
 Ngram Count NgramLength
 ____________________________ _____ ___________

 "thy" "sweet" "self" 4 3

 bagOfNgrams

1-37

 "why" "dost" "thou" 4 3
 "thy" "self" "thy" 3 3
 "thou" "thy" "self" 3 3
 "mine" "eye" "heart" 3 3
 "thou" "shalt" "find" 3 3
 "fair" "kind" "true" 3 3
 "thou" "art" "fair" 2 3
 "love" "thy" "self" 2 3
 "thy" "self" "thou" 2 3

Create Bag-of-N-Grams Model from Unique N-Grams and Counts

Create a bag-of-n-grams model using a string array of unique n-grams and a matrix of
counts.

Load the example n-grams and counts from sonnetsBigramCounts.mat. This file
contains a string array uniqueNgrams, which contains the unique n-grams, and the
matrix counts, which contains the n-gram frequency counts.

load sonnetsBigramCounts.mat

View the first few n-grams in uniqueNgrams.

uniqueNgrams(1:10,:)

ans = 10x2 string array
 "fairest" "creatures"
 "creatures" "desire"
 "desire" "increase"
 "increase" "thereby"
 "thereby" "beautys"
 "beautys" "rose"
 "rose" "might"
 "might" "never"
 "never" "die"
 "die" "riper"

Create the bag-of-n-grams model.

bag = bagOfNgrams(uniqueNgrams,counts)

1 Functions — Alphabetical List

1-38

bag =
 bagOfNgrams with properties:

 Counts: [154x8799 double]
 Vocabulary: [1x3092 string]
 Ngrams: [8799x2 string]
 NgramLengths: 2
 NumNgrams: 8799
 NumDocuments: 154

See Also
addDocument | bagOfWords | encode | removeDocument | removeEmptyDocuments |
removeInfrequentNgrams | removeNgrams | tfidf | tokenizedDocument |
topkngrams

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a

 bagOfNgrams

1-39

bagOfWords
Bag-of-words model

Description
A bag-of-words model (also known as a term-frequency counter) records the number of
times that words appear in each document of a collection.

bagOfWords does not split text into words. To create an array of tokenized documents,
see tokenizedDocument.

Creation

Syntax
bag = bagOfWords
bag = bagOfWords(documents)
bag = bagOfWords(uniqueWords,counts)

Description
bag = bagOfWords creates an empty bag-of-words model.

bag = bagOfWords(documents) counts the words appearing in documents and
returns a bag-of-words model.

bag = bagOfWords(uniqueWords,counts) creates a bag-of-words model using the
words in uniqueWords and the corresponding frequency counts in counts.

Input Arguments
documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

1 Functions — Alphabetical List

1-40

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

uniqueWords — Unique word list
string vector | cell array of character vectors

Unique word list, specified as a string vector or a cell array of character vectors. If
uniqueWords contains <missing>, then the function ignores the missing values. The
size of uniqueWords must be 1-by-V where V is the number of columns of counts.
Example: ["an" "example" "list"]
Data Types: string | cell

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words corresponding to uniqueWords, specified as a matrix of
nonnegative integers. The value counts(i,j) corresponds to the number of times the
word uniqueWords(j) appears in the ith document.

counts must have numel(uniqueWords) columns.

Properties
Counts — Word counts per document
sparse matrix

Word counts per document, specified as a sparse matrix.

NumDocuments — Number of documents seen
nonnegative integer

Number of documents seen, specified as a nonnegative integer.

NumWords — Number of words in model
nonnegative integer

Number of words in the model, specified as a nonnegative integer.

 bagOfWords

1-41

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

Object Functions
encode Encode documents as matrix of word or n-gram counts
tfidf Term Frequency–Inverse Document Frequency (tf-idf) matrix
topkwords Most important words in bag-of-words model or LDA topic
addDocument Add documents to bag-of-words or bag-of-n-grams model
removeDocument Remove documents from bag-of-words or bag-of-n-grams

model
removeEmptyDocuments Remove empty documents from tokenized document array,

bag-of-words model, or bag-of-n-grams model
removeWords Remove selected words from documents or bag-of-words

model
removeInfrequentWords Remove words with low counts from bag-of-words model
join Combine multiple bag-of-words or bag-of-n-grams models
wordcloud Create word cloud chart from text, bag-of-words model, bag-

of-n-grams model, or LDA model

Examples

Create Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

1 Functions — Alphabetical List

1-42

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

View the top 10 words and their total counts.

tbl = topkwords(bag,10)

tbl=10×2 table
 Word Count
 _______ _____

 "thy" 281
 "thou" 234
 "love" 162
 "thee" 161
 "doth" 88
 "mine" 63
 "shall" 59
 "eyes" 56
 "sweet" 55
 "time" 53

Create Bag-of-Words Model from Unique Words and Counts

Create a bag-of-words model using a string array of unique words and a matrix of word
counts.

uniqueWords = ["a" "an" "another" "example" "final" "sentence" "third"];
counts = [...
 1 2 0 1 0 1 0;
 0 0 3 1 0 4 0;
 1 0 0 5 0 3 1;
 1 0 0 1 7 0 0];
bag = bagOfWords(uniqueWords,counts)

 bagOfWords

1-43

bag =
 bagOfWords with properties:

 Counts: [4x7 double]
 Vocabulary: [1x7 string]
 NumWords: 7
 NumDocuments: 4

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data
into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file
names "exampleSonnetN.txt", where N is the number of the sonnet. Specify the read
function to be extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt','ReadFcn',readFcn)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet1.txt';
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet2.txt';
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet3.txt'
 ... and 1 more
 }
 UniformRead: 0
 ReadFcn: @extractFileText
 AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bagOfWords

bag =
 bagOfWords with properties:

1 Functions — Alphabetical List

1-44

 Counts: []
 Vocabulary: [1x0 string]
 NumWords: 0
 NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and
add the document to bag.

while hasdata(fds)
 str = read(fds);
 document = tokenizedDocument(str);
 bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag

bag =
 bagOfWords with properties:

 Counts: [4x276 double]
 Vocabulary: [1x276 string]
 NumWords: 276
 NumDocuments: 4

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeWords(bag,stopWords)

newBag =
 bagOfWords with properties:

 bagOfWords

1-45

 Counts: [2x4 double]
 Vocabulary: ["example" "short" "sentence" "second"]
 NumWords: 4
 NumDocuments: 2

Most Frequent Words of Bag-of-Words Model

Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Find the top five words.

T = topkwords(bag);

Find the top 20 words in the model.

k = 20;
T = topkwords(bag,k)

1 Functions — Alphabetical List

1-46

T=20×2 table
 Word Count
 ________ _____

 "thy" 281
 "thou" 234
 "love" 162
 "thee" 161
 "doth" 88
 "mine" 63
 "shall" 59
 "eyes" 56
 "sweet" 55
 "time" 53
 "beauty" 52
 "nor" 52
 "art" 51
 "yet" 51
 "o" 50
 "heart" 50
 ⋮

Create Tf-idf Matrix

Create a Term Frequency–Inverse Document Frequency (tf-idf) matrix from a bag-of-
words model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

 bagOfWords

1-47

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10×10

 3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 3.8918 2.4720 2.5520
 0 0 0 0 0 4.5287 0 0 0 0
 0 0 0 0 0 0 0 0 0 2.5520
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 2.5520
 0 0 2.7344 0 0 0 0 0 0 0

Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

1 Functions — Alphabetical List

1-48

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);

 bagOfWords

1-49

Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a folder, then you can import the text data
and create a bag-of-words model in parallel using parfor. If you have Parallel Computing
Toolbox™ installed, then the parfor loop runs in parallel, otherwise, it runs in serial. Use
join to combine an array of bag-of-words models into one model.

Create a bag-of-words model from a collection of files. The examples sonnets have file
names "exampleSonnetN.txt", where N is the number of the sonnet. Get a list of the
files and their locations using dir.

fileLocation = fullfile(matlabroot,'examples','textanalytics','exampleSonnet*.txt');
fileInfo = dir(fileLocation)

fileInfo = 5x1 struct array with fields:
 name
 folder
 date
 bytes
 isdir
 datenum

Initialize an empty bag-of-words model and then loop over the files and create an array of
bag-of-words models.

bag = bagOfWords;

numFiles = numel(fileInfo);
parfor i = 1:numFiles
 f = fileInfo(i);
 filename = fullfile(f.folder,f.name);

 textData = extractFileText(filename);
 document = tokenizedDocument(textData);
 bag(i) = bagOfWords(document);
end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 12 workers.

Combine the bag-of-words models using join.

bag = join(bag)

1 Functions — Alphabetical List

1-50

bag =
 bagOfWords with properties:

 Counts: [5x3275 double]
 Vocabulary: [1x3275 string]
 NumWords: 3275
 NumDocuments: 5

Tips
• If you intend to use a held out test set for your work, then partition your text data

before using bagOfWords. Otherwise, the bag-of-words model may bias your analysis.

See Also
addDocument | bagOfNgrams | encode | removeDocument | removeEmptyDocuments
| removeInfrequentWords | removeWords | tfidf | tokenizedDocument |
topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

 bagOfWords

1-51

context
Search documents for word occurrences in context

Syntax
T = context(documents,word)
T = context(documents,word,contextLength)
T = context(___ ,'Source',source)

Description
T = context(documents,word) searches for occurrences of word in documents and
returns a table showing word in context and its locations.

T = context(documents,word,contextLength) specifies the length of the context
to return.

T = context(___ ,'Source',source) displays the context in the original source
string source if the word is found.

Examples

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

1 Functions — Alphabetical List

1-52

Search for the word "life".

tbl = context(documents,"life");
head(tbl)

ans=8×3 table
 Context Document Word
 __ ________ ____

 "consumst thy self single life ah thou issueless shalt " 9 10
 "ainted counterfeit lines life life repair times pencil" 16 35
 "d counterfeit lines life life repair times pencil pupi" 16 36
 " heaven knows tomb hides life shows half parts write b" 17 14
 "he eyes long lives gives life thee " 18 69
 "tender embassy love thee life made four two alone sink" 45 23
 "ves beauty though lovers life beauty shall black lines" 63 50
 "s shorn away live second life second head ere beautys " 68 27

View the occurrences in a string array.

tbl.Context

ans = 23x1 string array
 "consumst thy self single life ah thou issueless shalt "
 "ainted counterfeit lines life life repair times pencil"
 "d counterfeit lines life life repair times pencil pupi"
 " heaven knows tomb hides life shows half parts write b"
 "he eyes long lives gives life thee "
 "tender embassy love thee life made four two alone sink"
 "ves beauty though lovers life beauty shall black lines"
 "s shorn away live second life second head ere beautys "
 "e rehearse let love even life decay lest wise world lo"
 "st bail shall carry away life hath line interest memor"
 "art thou hast lost dregs life prey worms body dead cow"
 " thoughts food life sweetseasond showers gro"
 "tten name hence immortal life shall though once gone w"
 " beauty mute others give life bring tomb lives life fa"
 "ve life bring tomb lives life fair eyes poets praise d"
 " steal thyself away term life thou art assured mine li"
 "fe thou art assured mine life longer thy love stay dep"
 " fear worst wrongs least life hath end better state be"
 "anst vex inconstant mind life thy revolt doth lie o ha"
 " fame faster time wastes life thou preventst scythe cr"
 "ess harmful deeds better life provide public means pub"

 context

1-53

 "ate hate away threw savd life saying "
 " many nymphs vowd chaste life keep came tripping maide"

Specify Context Length

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Search for the word "life" and return each occurrence with a 15-character context before
and after.

tbl = context(documents,"life",15);
head(tbl)

ans=8×3 table
 Context Document Word
 ____________________________________ ________ ____

 "hy self single life ah thou issuel" 9 10
 "nterfeit lines life life repair ti" 16 35
 "eit lines life life repair times p" 16 36
 "ows tomb hides life shows half par" 17 14
 "ng lives gives life thee " 18 69
 "assy love thee life made four two " 45 23
 " though lovers life beauty shall b" 63 50
 "ay live second life second head er" 68 27

View the occurrences in a string array.

tbl.Context

ans = 23x1 string array
 "hy self single life ah thou issuel"

1 Functions — Alphabetical List

1-54

 "nterfeit lines life life repair ti"
 "eit lines life life repair times p"
 "ows tomb hides life shows half par"
 "ng lives gives life thee "
 "assy love thee life made four two "
 " though lovers life beauty shall b"
 "ay live second life second head er"
 " let love even life decay lest wis"
 "all carry away life hath line inte"
 "ast lost dregs life prey worms bod"
 " thoughts food life sweetseasond s"
 "hence immortal life shall though o"
 "te others give life bring tomb liv"
 "ing tomb lives life fair eyes poet"
 "self away term life thou art assur"
 "t assured mine life longer thy lov"
 "t wrongs least life hath end bette"
 "nconstant mind life thy revolt dot"
 "er time wastes life thou preventst"
 "l deeds better life provide public"
 "way threw savd life saying "
 "hs vowd chaste life keep came trip"

Specify Source Text

Specify source text to display context.

Load the sonnets.txt data and split it into separate documents.

txt = extractFileText("sonnets.txt");
paragraphs = split(txt,[newline newline]);

Extract the sonnets from paragraphs. The first sonnet is the fifth element of paragraphs,
and the remaining sonnets appear in every second element afterwards.

sonnets = paragraphs(5:2:end);
documents = tokenizedDocument(sonnets);

Normalize the text, then search for the word "life".

documentsNormalized = normalizeWords(documents);
T = context(documentsNormalized,"life")

 context

1-55

T=23×3 table
 Context Document Word
 __ ________ ____

 "sum'st thy self in singl life ? ah ! if thou issueless" 9 18
 " : so should the line of life that life repair , which" 16 73
 "ld the line of life that life repair , which thi , tim" 16 75
 "s a tomb which hide your life , and show not half your" 17 34
 " live thi , and thi give life to thee . " 18 128
 "ssi of love to thee , my life , be made of four , with" 45 53
 "eauti , though my lover' life : hi beauti shall in the" 63 100
 " awai , to live a second life on second head ; er beau" 68 59
 "t your love even with my life decai ; lest the wise wo" 71 118
 "shall carri me awai , my life hath in thi line some in" 74 18
 "ast but lost the dreg of life , the prei of worm , my " 74 83
 "to my thought as food to life , or as sweet-season'd s" 75 10
 "ur name from henc immort life shall have , though i , " 81 42
 " , when other would give life , and bring a tomb . the" 83 108
 "a tomb . there live more life in on of your fair ey th" 83 118
 "yself awai , for term of life thou art assur mine ; an" 92 13
 ⋮

Since the words are normalized, the contexts may not be easy to read. To view the
contexts using the original text data, specify the source text using the 'Source' option.

T = context(documentsNormalized,"life",'Source',sonnets)

T=23×3 table
 Context Document Word
 __ ________ ____

 "um'st thy self in single life? Ah! if thou issueless s" 9 18
 ": So should the lines of life that life repair, Which " 16 73
 "d the lines of life that life repair, Which this, Time" 16 75
 " a tomb Which hides your life, and shows not half your" 17 34
 "ves this, and this gives life to thee. " 18 128
 "assy of love to thee, My life, being made of four, wit" 45 53
 "eauty, though my lover's life: His beauty shall in the" 63 100
 "n away, To live a second life on second head; Ere beau" 68 59
 "t your love even with my life decay; Lest the wise wor" 71 118
 " shall carry me away, My life hath in this line some i" 74 18
 "st but lost the dregs of life, The prey of worms, my b" 74 83
 "o my thoughts as food to life, Or as sweet-season'd sh" 75 10
 "name from hence immortal life shall have, Though I, on" 81 42

1 Functions — Alphabetical List

1-56

 ", When others would give life, and bring a tomb. There" 83 108
 "a tomb. There lives more life in one of your fair eyes" 83 118
 "hyself away, For term of life thou art assured mine; A" 92 13
 ⋮

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

word — Word to find
string scalar | character vector | scalar cell array

Word to find in context, specified as a string scalar, character vector, or scalar cell array
containing a character vector.
Data Types: char | string | cell

contextLength — Context length
25 (default) | positive integer

Context length, specified as a positive integer.

source — Source text
string array | cell array of character vectors

Source text, specified as the comma-separated pair consisting of 'Source' and a string
array or a cell array of character vectors. If the input documents are preprocessed, and
you have the source text, then you can use this option to make the output more readable.

The source text must be the same size as documents.

Output Arguments
T — Table of contexts
table

 context

1-57

Table of contexts with these columns:

Context String containing the queried word in context
Document Numeric index of the document containing the word
Word Numeric index of the word in the document

See Also
doc2cell | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-58

corpusLanguage
Detect language of text

Syntax
language = corpusLanguage(str)

Description
language = corpusLanguage(str) detects the language of the text in str. The
function detects English and Japanese text only.

Examples

Detect Language of Text

Detect the language of a string array of text.

str = [
 "恋の悩みで 苦しむ。"
 "空の星が輝きを増している。"];
language = corpusLanguage(str)

language =
'ja'

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.

 corpusLanguage

1-59

Example: ["An example of a short sentence."; "A second short
sentence."]

Data Types: string | char | cell

Output Arguments
language — Detected language
'en' | 'ja'

Detected language, returned as one of the following:

• 'en' – Detected English text
• 'ja' – Detected Japanese text

See Also
abbreviations | addLanguageDetails | addLemmaDetails |
addPartOfSpeechDetails | addSentenceDetails | splitSentences |
tokenDetails | tokenizedDocument | topLevelDomains

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Language Support”
“Japanese Language Support”

Introduced in R2018b

1 Functions — Alphabetical List

1-60

decodeHTMLEntities
Convert HTML and XML entities into characters

Syntax
newStr = decodeHTMLEntities(str)

Description
newStr = decodeHTMLEntities(str) replaces HTML and XML character entities and
numeric character references in the elements of str with their Unicode equivalent.

Examples

Replace HTML Entities with Unicode

Replace HTML character entities with their Unicode equivalent.

str = ["<>" "R&D"];
newStr = decodeHTMLEntities(str)

newStr = 1x2 string array
 "<>" "R&D"

Replace HTML numeric character references with their Unicode equivalent. Unicode
character with hex code is a space.

str = "R D";
newStr = decodeHTMLEntities(str)

newStr =
"R D"

 decodeHTMLEntities

1-61

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short
sentence."]

Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
erasePunctuation | eraseTags | eraseURLs | lower | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-62

doclength
Length of documents in document array

Syntax
N = doclength(documents)

Description
N = doclength(documents) returns the number of tokens in each document in
documents.

Examples

Find Number of Words in Documents

Find the number of words in an array of tokenized documents. Erase the punctuation
characters so they do not get counted as words.

str = [...
 "An example of a short sentence."
 "A second short sentence."];
documents = tokenizedDocument(str)

documents =
 2x1 tokenizedDocument:

 7 tokens: An example of a short sentence .
 5 tokens: A second short sentence .

documents = erasePunctuation(documents)

documents =
 2x1 tokenizedDocument:

 doclength

1-63

 6 tokens: An example of a short sentence
 4 tokens: A second short sentence

N = doclength(documents)

N = 2×1

 6
 4

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
N — Document lengths
vector of nonnegative integers

Document lengths, returned as a vector of nonnegative integers. The size of N is the same
as the size of documents.

See Also
context | doc2cell | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-64

doc2cell
Convert documents to cell array of string vectors

Syntax
C = doc2cell(documents)

Description
C = doc2cell(documents) converts a tokenizedDocument array to a cell array. The
entries of C are string arrays containing the corresponding words in each document.

Examples

Convert Document Array to Cell Array

Convert a tokenizedDocument array to a cell array of string vectors.

documents = tokenizedDocument([...
 "an example of a short sentence" ...
 "a second short sentence"])

documents =
 1x2 tokenizedDocument:

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

C = doc2cell(documents)

C = 1x2 cell array
 {1x6 string} {1x4 string}

View the first element of the cell array.

 doc2cell

1-65

C{1}

ans = 1x6 string array
 "an" "example" "of" "a" "short" "sentence"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
C — Output cell array
cell array of string vectors

Output cell array of string vectors. Each element of C is a string vector containing the
words of the corresponding document.

See Also
context | doclength | joinWords | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-66

doc2sequence
Convert documents to sequences for deep learning

Syntax
sequences = doc2sequence(enc,documents)
sequences = doc2sequence(emb,documents)
sequences = doc2sequence(___ ,Name,Value)

Description
sequences = doc2sequence(enc,documents) returns a cell array of the numeric
indices of the words in documents given by the word encoding enc. Each element of
sequences is a vector of the indices of the words in the corresponding document.

sequences = doc2sequence(emb,documents) returns a cell array of the embedding
vectors of the words in documents given by the word embedding emb. Each element of
sequences is a matrix of the embedding vectors of the words in the corresponding
document.

sequences = doc2sequence(___ ,Name,Value) specifies additional options using
one or more name-value pair arguments.

Examples

Convert Documents to Sequences of Word Indices

Load the weather reports data and create a tokenizedDocument array.

filename = "weatherReports.csv";
data = readtable(filename,'TextType','string');
textData = data.event_narrative;
documents = tokenizedDocument(textData);

 doc2sequence

1-67

Create a word encoding.

enc = wordEncoding(documents);

Convert the documents to sequences of word indices.

sequences = doc2sequence(enc,documents);

View the sizes of the first 10 sequences. Each sequence is a 1-by-S vector, where S is the
number of word indices in the sequence. Because the sequences are padded, S is
constant.

sequences(1:10)

ans = 10x1 cell array
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained
word embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This
function requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token
Word Embedding support package. If this support package is not installed, then the
function provides a download link.

emb = fastTextWordEmbedding;

Load the weather reports data and create a tokenizedDocument array.

filename = "weatherReports.csv";
data = readtable(filename,'TextType','string');

1 Functions — Alphabetical List

1-68

textData = data.event_narrative;
documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The
doc2sequence function, by default, left-pads the sequences to have the same length.
When converting large collections of documents using a high-dimensional word
embedding, padding can require large amounts of memory. To prevent the function from
padding the data, set the 'PaddingDirection' option to 'none'. Alternatively, you can
control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents,'PaddingDirection','none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the
embedding dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans = 10×1 cell array
 {300×8 single}
 {300×39 single}
 {300×14 single}
 {300×14 single}
 {300×0 single}
 {300×15 single}
 {300×20 single}
 {300×6 single}
 {300×21 single}
 {300×10 single}

Pad or Truncate Sequences to Specified Length

Convert a collection of documents to sequences of word vectors using a pretrained word
embedding, and pad or truncate the sequences to a specified length.

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding;

 doc2sequence

1-69

Load the weather reports data and create a tokenizedDocument array.

filename = "weatherReports.csv";
data = readtable(filename,'TextType','string');
textData = data.event_narrative;
documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors. Specify to left-pad or truncate the
sequences to have length 100.

sequences = doc2sequence(emb,documents,'Length',100);

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the
embedding dimension, and S is the number of word vectors in the sequence (the
sequence length). Because the sequence length is specified, S is constant.

sequences(1:10)

ans = 10×1 cell array
 {300×100 single}
 {300×100 single}
 {300×100 single}
 {300×100 single}
 {300×100 single}
 {300×100 single}
 {300×100 single}
 {300×100 single}
 {300×100 single}
 {300×100 single}

Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

1 Functions — Alphabetical List

1-70

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Length','shortest' truncates the sequences to have the same length as
the shortest sequence.

UnknownWord — Unknown word behavior
'discard' (default) | 'nan'

Unknown word behavior, specified as the comma-separated pair consisting of
'UnknownWord' and one of the following:

• 'discard' – If a word is not in the input map, then discard it.
• 'nan' – If a word is not in the input map, then return a NaN value.

Tip If you are creating sequences for training a deep learning network with a word
embedding, use 'discard'. Do not use sequences with NaN values, because doing so can
propagate errors through the network.

PaddingDirection — Padding direction
'left' (default) | 'right' | 'none'

Padding direction, specified as the comma-separated pair consisting of
'PaddingDirection' and one of the following:

• 'left' – Pad sequences on the left.
• 'right' – Pad sequences on the right.
• 'none' – Do not pad sequences.

 doc2sequence

1-71

Tip When converting large collections of data using a high-dimensional word embedding,
padding can require large amounts of memory. To prevent the function from adding too
much padding, set the 'PaddingDirection' option to 'none' or set 'Length' to a
smaller value.

PaddingValue — Padding value
0 (default) | numeric scalar

Padding value, specified as the comma-separated pair consisting of 'PaddingValue'
and a numeric scalar. Do not pad sequences with NaN, because doing so can propagate
errors through the network.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Length — Sequence length
'longest' (default) | 'shortest' | positive integer

Sequence length, specified as the comma-separated pair consisting of 'Length' and one
of the following:

• 'longest' – Pad sequences to have the same length as the longest sequence.
• 'shortest' – Truncate sequences to have the same length as the shortest sequence.
• Positive integer – Pad or truncate sequences to have the specified length. The function

truncates the sequences on the right.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | char | string

Output Arguments
sequences — Output sequences
cell array

Output sequences, returned as a cell array.

For word embedding input, the ith element of sequences is a matrix of the word vectors
corresponding to the ith input document.

1 Functions — Alphabetical List

1-72

For word encoding input, the ith element of sequences is a vector of the word encoding
indices corresponding to the ith input document.

Tips
• When converting large collections of data using a high-dimensional word embedding,

padding can require large amounts of memory. To prevent the function from adding
too much padding, set the 'PaddingDirection' option to 'none' or set 'Length'
to a smaller value.

See Also
fastTextWordEmbedding | ind2word | isVocabularyWord | tokenizedDocument |
trainWordEmbedding | vec2word | word2ind | word2vec | wordEmbedding |
wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b

 doc2sequence

1-73

docfun
Apply function to words in documents

Syntax
newDocuments = docfun(func,documents)
newDocuments = docfun(func,documents1,...,documentsN)

Description
newDocuments = docfun(func,documents) calls the function specified by the
function handle func and passes elements of documents as a string vector of words.

• If func accepts exactly one input argument, then the words of newDocuments(i) are
the output of func(string(documents(i))).

• If func accepts two input arguments, then the words of newDocuments(i) are the
output of func(string(documents(i)),details), where details contains the
corresponding token details output by tokenDetails.

• If func changes the number of words in the document, then docfun removes the
token details from that document.

docfun does not perform the calls to function func in a specific order.

newDocuments = docfun(func,documents1,...,documentsN) calls the function
specified by the function handle func and passes elements of documents1,
…,documentsN as string vectors of words, where N is the number of inputs to the
function func. The words of newDocuments(i) are the output of
func(string(documents1(i)),...,string(documentsN(i))).

Each of documents1,…,documentsN must be the same size.

Examples

1 Functions — Alphabetical List

1-74

Reverse Words in Documents

Apply reverse to each word in a document array.

documents = tokenizedDocument([...
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

func = @reverse;
newDocuments = docfun(func,documents)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: na elpmaxe fo a trohs ecnetnes
 4 tokens: a dnoces trohs ecnetnes

Specify Document Function with Multiple Inputs

Tag words by combining the words from one document array with another, using the
string function plus.

Create the first tokenizedDocument array. Erase the punctuation and convert the text
to lowercase.

str = [...
 "An example of a short sentence."
 "A second short sentence."];
str = erasePunctuation(str);
str = lower(str);
documents1 = tokenizedDocument(str)

documents1 =
 2x1 tokenizedDocument:

 docfun

1-75

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

Create the second tokenizedDocument array. The documents have the same number of
words as the corresponding documents in documents1. The words of documents2 are
POS tags for the corresponding words.

documents2 = tokenizedDocument([...
 "_det _noun _prep _det _adj _noun"
 "_det _adj _adj _noun"])

documents2 =
 2x1 tokenizedDocument:

 6 tokens: _det _noun _prep _det _adj _noun
 4 tokens: _det _adj _adj _noun

func = @plus;
newDocuments = docfun(func,documents1,documents2)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: an_det example_noun of_prep a_det short_adj sentence_noun
 4 tokens: a_det second_adj short_adj sentence_noun

The output is not the same as calling plus on the documents directly.

plus(documents1,documents2)

ans =
 2x1 tokenizedDocument:

 12 tokens: an example of a short sentence _det _noun _prep _det _adj _noun
 8 tokens: a second short sentence _det _adj _adj _noun

1 Functions — Alphabetical List

1-76

Input Arguments
func — Function handle
function handle

Function handle that accepts N string arrays as inputs and outputs a string array. func
must accept string(documents1(i)),...,string(documentsN(i)) as input.

Function handle to apply to words in documents. The function must have one of the
following syntaxes:

• newWords = func(words), where words is a string array of the words of a single
document.

• newWords = func(words,details), where words is a string array of the words of
a single document, and details is the corresponding table of token details given by
tokenDetails.

• newWords = func(words1,...,wordsN), where words1,...,wordsN are string
arrays of words.

Example: @reverse
Data Types: function_handle

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
addPartOfSpeechDetails | addSentenceDetails | bagOfNgrams | bagOfWords |
decodeHTMLEntities | lower | plus | regexprep | replace | tokenDetails |
tokenizedDocument | upper

 docfun

1-77

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-78

encode
Encode documents as matrix of word or n-gram counts

Use encode to encode an array of tokenized documents as a matrix of word or n-gram
counts according to a bag-of-words or bag-of-n-grams model. To encode documents as
vectors or word indices, use a wordEncoding object.

Syntax
counts = encode(bag,documents)
counts = encode(bag,words)
counts = encode(___ ,Name,Value)

Description
counts = encode(bag,documents) returns a matrix of frequency counts for
documents based on the bag-of-words or bag-of-n-grams model bag.

counts = encode(bag,words) returns a matrix of frequency counts for a list of words.

counts = encode(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Encode Documents as Word Count Matrix

Encode an array of documents as a matrix of word counts.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

 encode

1-79

bag =
 bagOfWords with properties:

 Counts: [2x7 double]
 Vocabulary: [1x7 string]
 NumWords: 7
 NumDocuments: 2

documents = tokenizedDocument([
 "a new sentence"
 "a second new sentence"])

documents =
 2x1 tokenizedDocument:

 3 tokens: a new sentence
 4 tokens: a second new sentence

View the documents encoded as a matrix of word counts. The word "new" does not appear
in bag, so it is not counted.

counts = encode(bag,documents);
full(counts)

ans = 2×7

 0 0 0 1 0 1 0
 0 0 0 1 0 1 1

The columns correspond to the vocabulary of the bag-of-words model.

bag.Vocabulary

ans = 1x7 string array
 "an" "example" "of" "a" "short" "sentence" "second"

Encode Words as Word Count Vector

Encode an array of words as a vector of word counts.

1 Functions — Alphabetical List

1-80

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [2x7 double]
 Vocabulary: [1x7 string]
 NumWords: 7
 NumDocuments: 2

words = ["another" "example" "of" "a" "short" "example" "sentence"];
counts = encode(bag,words)

counts =
 (1,2) 2
 (1,3) 1
 (1,4) 1
 (1,5) 1
 (1,6) 1

Output Document Word Counts in Columns

Encode an array of documents as a matrix of word counts with documents in columns.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [2x7 double]
 Vocabulary: [1x7 string]
 NumWords: 7
 NumDocuments: 2

 encode

1-81

documents = tokenizedDocument([
 "a new sentence"
 "a second new sentence"])

documents =
 2x1 tokenizedDocument:

 3 tokens: a new sentence
 4 tokens: a second new sentence

View the documents encoded as a matrix of word counts with documents in columns. The
word "new" does not appear in bag, so it is not counted.

counts = encode(bag,documents,'DocumentsIn','columns');
full(counts)

ans = 7×2

 0 0
 0 0
 0 0
 1 1
 0 0
 1 1
 0 1

Input Arguments
bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character

1 Functions — Alphabetical List

1-82

vectors, then it must be a row vector representing a single document, where each
element is a word.

Tip To ensure that the documents are encoded correctly, you must preprocess the input
documents using the same steps as the documents used to create the input model. For an
example showing how to create a function to preprocess text data, see “Prepare Text Data
for Analysis”.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'DocumentsIn','rows' specifies the orientation of the output documents as
rows.

DocumentsIn — Orientation of output documents
'rows' (default) | 'columns'

Orientation of output documents in the frequency count matrix, specified as the comma-
separated pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Return a matrix of frequency counts with rows corresponding to documents.
• 'columns' – Return a transposed matrix of frequency counts with columns

corresponding to documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

 encode

1-83

Indicator for forcing output to be returned as cell array, specified as the comma separated
pair consisting of 'ForceCellOutput' and true or false.
Data Types: logical

Output Arguments
counts — Word or n-gram counts
sparse matrix | cell array of sparse matrices

Word or n-gram counts, returned as a sparse matrix of nonnegative integers or a cell
array of sparse matrices.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns
the outputs as a cell array of sparse matrices. Each element in the cell array is matrix of
word or n-gram counts of the corresponding element of bag.

See Also
bagOfNgrams | bagOfWords | tfidf | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

1 Functions — Alphabetical List

1-84

erasePunctuation
Erase punctuation from text and documents

Syntax
newStr = erasePunctuation(str)
newDocuments = erasePunctuation(documents)
newDocuments = erasePunctuation(documents,'TokenTypes',types)

Description
newStr = erasePunctuation(str) erases punctuation and symbols from the
elements of str. The function removes characters that belong to the Unicode punctuation
or symbol classes.

newDocuments = erasePunctuation(documents) erases punctuation and symbols
from documents. If a word is empty after removing punctuation and symbol characters,
then the function removes it. For tokenized document input, the function erases
punctuation from tokens with type 'punctuation' and 'other'. For example, the
function does not erase punctuation and symbol characters from URLs and email
addresses.

newDocuments = erasePunctuation(documents,'TokenTypes',types) erases
punctuation and symbols from only the specified token types.

Examples

Erase Punctuation from Text

Erase the punctuation from the text in str.

str = "it's one and/or two.";
newStr = erasePunctuation(str)

 erasePunctuation

1-85

newStr =
"its one andor two"

To insert a space where the "/" symbol is, first use the replace function.

newStr = replace(str,"/"," ")

newStr =
"it's one and or two."

newStr = erasePunctuation(newStr)

newStr =
"its one and or two"

Erase Punctuation from Documents

Erase the punctuation from an array of documents.

documents = tokenizedDocument([...
 "An example of a short sentence."
 "Another example... with a URL: https://www.mathworks.com"])

documents =
 2x1 tokenizedDocument:

 7 tokens: An example of a short sentence .
 10 tokens: Another example . . . with a URL : https://www.mathworks.com

newDocuments = erasePunctuation(documents)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: An example of a short sentence
 6 tokens: Another example with a URL https://www.mathworks.com

Here, the function does not erase the punctuation symbols from the URL.

1 Functions — Alphabetical List

1-86

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short
sentence."]

Data Types: string | char | cell

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

types — Token types to erase punctuation from
{'punctuation','other'} (default) | string array | character vector | cell array of
character vectors

Token types to erase punctuation from, specified as a character vector, string array, or a
cell array of character vectors containing one or more of the following token types:

• 'letters' – string of letter characters only
• 'digits' – string of digits only
• 'punctuation' – string of punctuation and symbol characters only
• 'email-address' – detected email address
• 'web-address' – detected web address
• 'hashtag' – detected hashtag (starts with "#" character followed by a letter)
• 'at-mention' – detected at-mention (starts with "@" character)
• 'emoticon' – detected emoticon
• 'emoji' – detected emoji
• 'other' – does not belong to previous types

Data Types: string | char | cell

 erasePunctuation

1-87

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Definitions

Unicode Character Categories
Each Unicode character is assigned a category. The following table summarizes the
Unicode punctuation and symbol categories and provides an example character from each
category:

Category Category Code Number of
Characters

Example Character

Punctuation,
Connector

[Pc] 10 _

Punctuation, Dash [Pd] 24 -
Punctuation, Close [Pe] 73)
Punctuation, Final
quote

[Pf] 10 ”

Punctuation, Initial
quote

[Pi] 12 “

Punctuation, Other [Po] 566 !
Punctuation, Open [Ps] 75 (
Symbol, Currency [Sc] 54 $

1 Functions — Alphabetical List

1-88

Category Category Code Number of
Characters

Example Character

Symbol, Modifier [Sk] 121 ^
Symbol, Math [Sm] 948 +
Symbol, Other [So] 5855 ¦

For more information, see [1].

Tips
• For string input, erasePunctuation removes punctuation characters from URLs and

HTML tags. This behavior can prevent the functions eraseTags, eraseURLs, and
decodeHTMLEntities from working as expected. If you want to use these functions
to preprocess your text, then use these functions before using erasePunctuation.

Compatibility Considerations

erasePunctuation skips complex tokens
Behavior changed in R2018b

Starting in R2018b, for tokenizedDocument input, erasePunctuation, by default,
erases punctuation and symbol characters from tokens with type 'punctuation' or
'other' only. This behavior prevents the function from affecting complex tokens such as
URLs and email-addresses.

In previous versions, erasePunctuation erases punctuation characters from all tokens.
To reproduce the behavior, use the 'TokenTypes' name-value pair.

References
[1] Unicode Character Categories. https://www.fileformat.info/info/unicode/category/

index.htm

 erasePunctuation

1-89

https://www.fileformat.info/info/unicode/category/index.htm
https://www.fileformat.info/info/unicode/category/index.htm

See Also
decodeHTMLEntities | eraseTags | eraseURLs | lower | tokenizedDocument |
upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”

Introduced in R2017b

1 Functions — Alphabetical List

1-90

eraseTags
Erase HTML and XML tags from text

Syntax
newStr = eraseTags(str)

Description
newStr = eraseTags(str) erases HTML and XML comments and tags from the
elements of str.

The function erases comments and tags with tag name a, abbr, acronym, b, bdi, bdo,
big, code, del, dfn, em, font, i, ins, kbd, mark, rp, rt, ruby, s, small, span,
strike, strong sub, sup, tt, u, var and wbr, and replaces all other tags with a space.

The function does not remove HTML and XML elements (the tags as well anything
between start and end tags). For example, eraseTags("x<a>y") returns the string
"xy". It only removes the tags <a> and , and does not remove the element
<a>y.

Examples

Erase HTML and XML Tags and Comments

Erase the tags from some HTML code. The function replaces the
 tag with a space.

htmlCode = "one.
two";
newStr = eraseTags(htmlCode)

newStr =
"one. two"

Erase the tags from some XML code. The function removes the <sub> tags and does not
replace them with a space.

 eraseTags

1-91

xmlCode = "H₂O";
newStr = eraseTags(xmlCode)

newStr =
"H2O"

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short
sentence."]

Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
decodeHTMLEntities | erasePunctuation | eraseURLs | lower |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-92

eraseURLs
Erase HTTP and HTTPS URLs from text

Syntax
newStr = eraseURLs(str)

Description
newStr = eraseURLs(str) erases HTTP and HTTPS URLs from the elements of str.

Examples

Erase URL from Text

Erase the URL from the text in str.

str = "For more information, see https://www.mathworks.com";
newStr = eraseURLs(str)

newStr =
"For more information, see "

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short
sentence."]

 eraseURLs

1-93

Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | lower |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-94

extractFileText
Read text from PDF, Microsoft Word, HTML, and plain text files

Syntax
str = extractFileText(filename)
str = extractFileText(filename,Name,Value)

Description
str = extractFileText(filename) reads the text data from a file as a string.

str = extractFileText(filename,Name,Value) specifies additional options using
one or more name-value pair arguments.

Examples

Extract Text Data from Text File

Extract the text from sonnets.txt using extractFileText. The file sonnets.txt
contains Shakespeare's sonnets in plain text.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I");
ii = strfind(str,"II");
start = i(1);
fin = ii(1);
extractBetween(str,start,fin-1)

ans =
 "I

 extractFileText

1-95

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,
 But as the riper should by time decease,
 His tender heir might bear his memory:
 But thou, contracted to thine own bright eyes,
 Feed'st thy light's flame with self-substantial fuel,
 Making a famine where abundance lies,
 Thy self thy foe, to thy sweet self too cruel:
 Thou that art now the world's fresh ornament,
 And only herald to the gaudy spring,
 Within thine own bud buriest thy content,
 And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

 "

Extract Text Data from PDF

Extract the text from exampleSonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF file.

str = extractFileText("exampleSonnets.pdf");

View the second sonnet.

ii = strfind(str,"II");
iii = strfind(str,"III");
start = ii(1);
fin = iii(1);
extractBetween(str,start,fin-1)

ans =
 "II

 When forty winters shall besiege thy brow,
 And dig deep trenches in thy beauty's field,
 Thy youth's proud livery so gazed on now,
 Will be a tatter'd weed of small worth held:
 Then being asked, where all thy beauty lies,
 Where all the treasure of thy lusty days;

1 Functions — Alphabetical List

1-96

 To say, within thine own deep sunken eyes,
 Were an all-eating shame, and thriftless praise.
 How much more praise deserv'd thy beauty's use,
 If thou couldst answer 'This fair child of mine
 Shall sum my count, and make my old excuse,'
 Proving his beauty by succession thine!
 This were to be new made when thou art old,
 And see thy blood warm when thou feel'st it cold.

 "

Extract the text from pages 3, 5, and 7 of the PDF file.

pages = [3 5 7];
str = extractFileText("exampleSonnets.pdf", ...
 'Pages',pages);

View the 10th sonnet.

x = strfind(str,"X");
xi = strfind(str,"XI");
start = x(1);
fin = xi(1);
extractBetween(str,start,fin-1)

ans =
 "X

 Is it for fear to wet a widow's eye,
 That thou consum'st thy self in single life?
 Ah! if thou issueless shalt hap to die,
 The world will wail thee like a makeless wife;
 The world will be thy widow and still weep
 That thou no form of thee hast left behind,
 When every private widow well may keep
 By children's eyes, her husband's shape in mind:
 Look! what an unthrift in the world doth spend
 Shifts but his place, for still the world enjoys it;
 But beauty's waste hath in the world an end,
 And kept unused the user so destroys it.
 No love toward others in that bosom sits
 That on himself such murd'rous shame commits.

 X

 extractFileText

1-97

 For shame! deny that thou bear'st love to any,
 Who for thy self art so unprovident.
 Grant, if thou wilt, thou art belov'd of many,
 But that thou none lov'st is most evident:
 For thou art so possess'd with murderous hate,
 That 'gainst thy self thou stick'st not to conspire,
 Seeking that beauteous roof to ruinate
 Which to repair should be thy chief desire.

 "

Import Text from Multiple Files Using a File Datastore

If your text data is contained in multiple files in a folder, then you can import the text data
into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples sonnets have file
names "exampleSonnetN.txt", where N is the number of the sonnet. Specify the read
function to be extractFileText.

readFcn = @extractFileText;
fds = fileDatastore('exampleSonnet*.txt','ReadFcn',readFcn)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet1.txt';
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet2.txt';
 ' ...\ib632619\1\tp2e0b73dd\textanalytics-ex73762432\exampleSonnet3.txt'
 ... and 1 more
 }
 UniformRead: 0
 ReadFcn: @extractFileText
 AlternateFileSystemRoots: {}

Create an empty bag-of-words model.

bag = bagOfWords

1 Functions — Alphabetical List

1-98

bag =
 bagOfWords with properties:

 Counts: []
 Vocabulary: [1x0 string]
 NumWords: 0
 NumDocuments: 0

Loop over the files in the datastore and read each file. Tokenize the text in each file and
add the document to bag.

while hasdata(fds)
 str = read(fds);
 document = tokenizedDocument(str);
 bag = addDocument(bag,document);
end

View the updated bag-of-words model.

bag

bag =
 bagOfWords with properties:

 Counts: [4x276 double]
 Vocabulary: [1x276 string]
 NumWords: 276
 NumDocuments: 4

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the
HTML code as a string.

code = "<html><body><h1>THE SONNETS</h1><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =
 "THE SONNETS

 by William Shakespeare"

 extractFileText

1-99

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Pages',[1 3 5] specifies to read pages 1, 3, and 5 from a PDF file.

Encoding — Character encoding
'auto' (default) | 'UTF-8' | 'ISO-8859-1' | 'windows-1251' | 'windows-1252' | ...

Character encoding to use, specified as the comma-separated pair consisting of
'Encoding' and a character vector or a string scalar. The character vector or string
scalar must contain a standard character encoding scheme name such as the following.

'Big5' 'ISO-8859-1' 'windows-847'
'Big5-HKSCS' 'ISO-8859-2' 'windows-949'
'CP949' 'ISO-8859-3' 'windows-1250'
'EUC-KR' 'ISO-8859-4' 'windows-1251'
'EUC-JP' 'ISO-8859-5' 'windows-1252'
'EUC-TW' 'ISO-8859-6' 'windows-1253'
'GB18030' 'ISO-8859-7' 'windows-1254'
'GB2312' 'ISO-8859-8' 'windows-1255'
'GBK' 'ISO-8859-9' 'windows-1256'
'IBM866' 'ISO-8859-11' 'windows-1257'

1 Functions — Alphabetical List

1-100

'KOI8-R' 'ISO-8859-13' 'windows-1258'
'KOI8-U' 'ISO-8859-15' 'US-ASCII'
 'Macintosh' 'UTF-8'
 'Shift_JIS'

If you do not specify an encoding scheme, then the function performs heuristic auto-
detection for the encoding to use. If these heuristics fail, then you must specify one
explicitly.

This option only applies when the input is a plain text file.
Data Types: char | string

ExtractionMethod — Extraction method
'tree' (default) | 'article' | 'all-text'

Extraction method, specified as the comma-separated pair consisting of
'ExtractionMethod' and one of the following:

Option Description
'tree' Analyze the DOM tree and text contents,

then extract a block of paragraphs.
'article' Detect article text and extract a block of

paragraphs.
'all-text' Extract all text in the HTML body, except

for scripts and CSS styles.

Password — Password to open PDF file
character vector | string scalar

Password to open PDF file, specified as the comma-separated pair consisting of
'Password' and a character vector or a string scalar. This option only applies if the
input file is a PDF.
Example: 'Password','skroWhtaM'
Data Types: char | string

Pages — Pages to read from PDF file
vector of positive integers

 extractFileText

1-101

Pages to read from PDF file, specified as the comma-separated pair consisting of
'Pages' and a vector of positive integers. This option only applies if the input file is a
PDF file. The function, by default, reads all pages from the PDF file.
Example: 'Pages',[1 3 5]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Tips
• To read text directly from HTML code, use extractHTMLText.

See Also
extractHTMLText | readPDFFormData | tokenizedDocument | writeTextDocument

Topics
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-102

extractHTMLText
Extract text from HTML

Syntax
str = extractHTMLText(code)
str = extractHTMLText(tree)
str = extractHTMLText(___ ,'ExtractionMethod',ex)

Description
str = extractHTMLText(code) parses the HTML code in code and extracts the text.

str = extractHTMLText(tree) extracts the text from an HTML tree.

str = extractHTMLText(___ ,'ExtractionMethod',ex) also specifies the
extraction method to use.

Examples

Extract Text from HTML

To extract text data directly from HTML code, use extractHTMLText and specify the
HTML code as a string.

code = "<html><body><h1>THE SONNETS</h1><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =
 "THE SONNETS

 by William Shakespeare"

 extractHTMLText

1-103

Extract Text from Website

To extract the text data from a web page, first use the webread function to read the
HTML code. Then use the extractHTMLText function on the returned code.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);
str = extractHTMLText(code)

str =
 'Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing, and modeling text data. Models created with the toolbox can be used in applications such as sentiment analysis, predictive maintenance, and topic modeling.

 Text Analytics Toolbox includes tools for processing raw text from sources such as equipment logs, news feeds, surveys, operator reports, and social media. You can extract text from popular file formats, preprocess raw text, extract individual words, convert text into numerical representations, and build statistical models.

 Using machine learning techniques such as LSA, LDA, and word embeddings, you can find clusters and create features from high-dimensional text datasets. Features created with Text Analytics Toolbox can be combined with features from other data sources to build machine learning models that take advantage of textual, numeric, and other types of data.'

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using the webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes
with element name "A".

selector = "A";
subtrees = findElement(tree,selector);

View the first few subtrees.

subtrees(1:10)

ans =
 10×1 htmlTree:

1 Functions — Alphabetical List

1-104

 (1,1) <A class="svg_link navbar-brand" href="https://www.mathworks.com?s_ti…
 (2,1) <A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=ht…
 (3,1) Product…
 (4,1) Solut…
 (5,1) Acade…
 (6,1) Suppor…
 (7,1) Commu…
 (8,1) E…
 (9,1) <A href="https://www.mathworks.com/company/aboutus/contact_us.html?s_…
 (10,1) <A href="https://www.mathworks.com/store?s_cid=store_top_nav&s_ti…

Extract the text from the subtrees using extractHTMLText. The result contains the link
text from each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10×1 string array
 ""
 "Sign In"
 "Products"
 "Solutions"
 "Academia"
 "Support"
 "Community"
 "Events"
 "Contact Us"
 "How to Buy"

Input Arguments
code — HTML code
string scalar | character vector | scalar cell array containing a character vector

HTML code, specified as a string scalar, a character vector, or a scalar cell array
containing a character vector.

Tip

 extractHTMLText

1-105

• To read HTML code from a web page, use webread.
• To extract text from an HTML file, use extractFileText.

Example: "MathWorks"
Data Types: char | string | cell

tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.

ex — Extraction method
'tree' (default) | 'article' | 'all-text'

Extraction method, specified as one of the following:

Option Description
'tree' Analyze the DOM tree and text contents,

then extract a block of paragraphs.
'article' Detect article text and extract a block of

paragraphs.
'all-text' Extract all text in the HTML body, except

for scripts and CSS styles.

See Also
extractFileText | htmlTree | readPDFFormData | tokenizedDocument | webread
| writeTextDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

1 Functions — Alphabetical List

1-106

Introduced in R2018a

 extractHTMLText

1-107

fastTextWordEmbedding
Pretrained fastText word embedding

Syntax
emb = fastTextWordEmbedding

Description
emb = fastTextWordEmbedding returns a 300-dimensional pretrained word
embedding for 1 million English words.

This function requires the Text Analytics Toolbox Model for fastText English 16 Billion
Token Word Embedding support package. If this support package is not installed, the
function provides a download link.

Examples

Download fastText Support Package

Download and install the Text Analytics Toolbox Model for fastText English 16 Billion
Token Word Embedding support package.

Type fastTextWordEmbedding at the command line.

fastTextWordEmbedding

If the Text Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding
support package is not installed, then the function provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then
click Install. Check that the installation is successful by typing emb =
fastTextWordEmbedding at the command line.

emb = fastTextWordEmbedding

1 Functions — Alphabetical List

1-108

emb =

 wordEmbedding with properties:

 Dimension: 300
 Vocabulary: [1×1000000 string]

If the required support package is installed, then the function returns a wordEmbedding
object.

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding

emb =
 wordEmbedding with properties:

 Dimension: 300
 Vocabulary: [1×1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word =
"France"

 fastTextWordEmbedding

1-109

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained
word embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This
function requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token
Word Embedding support package. If this support package is not installed, then the
function provides a download link.

emb = fastTextWordEmbedding;

Load the weather reports data and create a tokenizedDocument array.

filename = "weatherReports.csv";
data = readtable(filename,'TextType','string');
textData = data.event_narrative;
documents = tokenizedDocument(textData);

Convert the documents to sequences of word vectors using doc2sequence. The
doc2sequence function, by default, left-pads the sequences to have the same length.
When converting large collections of documents using a high-dimensional word
embedding, padding can require large amounts of memory. To prevent the function from
padding the data, set the 'PaddingDirection' option to 'none'. Alternatively, you can
control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents,'PaddingDirection','none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the
embedding dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans = 10×1 cell array
 {300×8 single}
 {300×39 single}
 {300×14 single}
 {300×14 single}
 {300×0 single}
 {300×15 single}
 {300×20 single}
 {300×6 single}
 {300×21 single}
 {300×10 single}

1 Functions — Alphabetical List

1-110

Output Arguments
emb — Pretrained word embedding
wordEmbedding object

Pretrained word embedding, returned as a wordEmbedding object.

See Also
doc2sequence | isVocabularyWord | readWordEmbedding | tokenizedDocument |
trainWordEmbedding | vec2word | word2vec | wordEmbedding |
wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018a

 fastTextWordEmbedding

1-111

findElement
Find elements in HTML tree

Syntax
subtrees = findElement(tree,selector)

Description
subtrees = findElement(tree,selector) returns the elements in tree matching
the CSS selector.

Examples

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using the webread function.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes
with element name "A".

selector = "A";
subtrees = findElement(tree,selector);

View the first few subtrees.

subtrees(1:10)

1 Functions — Alphabetical List

1-112

ans =
 10×1 htmlTree:

 (1,1) <A class="svg_link navbar-brand" href="https://www.mathworks.com?s_ti…
 (2,1) <A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=ht…
 (3,1) Product…
 (4,1) Solut…
 (5,1) Acade…
 (6,1) Suppor…
 (7,1) Commu…
 (8,1) E…
 (9,1) <A href="https://www.mathworks.com/company/aboutus/contact_us.html?s_…
 (10,1) <A href="https://www.mathworks.com/store?s_cid=store_top_nav&s_ti…

Extract the text from the subtrees using extractHTMLText. The result contains the link
text from each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10×1 string array
 ""
 "Sign In"
 "Products"
 "Solutions"
 "Academia"
 "Support"
 "Community"
 "Events"
 "Contact Us"
 "How to Buy"

Input Arguments
tree — HTML tree
scalar htmlTree object

HTML tree, specified as a scalar htmlTree object.

 findElement

1-113

selector — CSS selector
string scalar | character vector

CSS selector, specified as a string scalar or a character vector. For more information, see
“CSS Selectors” on page 1-115.

Output Arguments
subtrees — Matching HTML subtrees
htmlTree array

Matching HTML subtrees, returned as an htmlTree array.

Definitions

HTML Elements
A typical HTML element contains the following components:

• Element name – Name of the HTML tag. The element name corresponds to the Name
property of the HTML tree.

• Attributes – Additional information about the tag. HTML attributes have the form
name="value", where name and value denote the attribute name and value
respectively. The attributes appear inside the opening HTML tag. To get the attribute
values from an HTML tree, use getAttribute.

• Content – Element content. The content appears between opening and closing HTML
tags. The content can be text data or nested HTML elements. To extract the text from
an htmlTree object, use extractHTMLText. To get the nested HTML elements of an
htmlTree object, use the Children property.

For example, the HTML element <a href="https://
www.mathworks.com">Home comprises the following components:

Component Value Description
Element name a Element is a

hyperlink

1 Functions — Alphabetical List

1-114

Component Value Description
Attribute Attribute name href Hyperlink reference

Attribute value "https://
www.mathworks.co
m"

Hyperlink reference
value

Content Home Text to display

CSS Selectors
CSS selectors specify patterns to match elements in a tree.

This table shows some examples showing how to extract different HTML elements from
an HTML tree:

Task CSS Selector Example
Find all paragraph (<p>)
elements.

"p" findElement(tree,"p")

Find all paragraph (<p>)
and list item ()
elements.

"p,li" findElement(tree,"p,l
i")

Find all paragraph (<p>)
elements that are inside
table (<table>) elements.

"table p" findElement(tree,"tab
le p")

Find all hyperlink (<a>)
elements with hyperlink
reference attribute (href)
values ending with ".pdf".

"a[href$="".pdf""]" findElement(tree,"a[h
ref$="".pdf""]")

Find all paragraph (<p>)
elements that are the first
child of their parent.

"p:first-child" findElement(tr,"p:fir
st-child")

Find all paragraph (<p>)
elements that are the first
paragraph element of their
parent.

"p:first-of-type" findElement(tr,"p:fir
st-of-type")

 findElement

1-115

Task CSS Selector Example
Find all emphasis ()
elements where the parent
is a paragraph (<p>)
element.

"p > em" findElement(tr,"p >
em")

Find all paragraph (<p>)
elements appearing
immediately after a heading
1 (<h1>) element

"h1 + p" findElement(tr,"h1 +
p")

Find all empty elements. ":empty" findElement(tr,":empt
y")

Find all nonempty label
(<label>) elements.

"label:not(:empty)" findElement(tr,"label
:not(:empty)")

The findElement function supports all of CSS level 3, except for the selectors ":lang",
":checked", ":link", ":active", ":hover", ":focus", ":target", ":enabled",
and ":disabled".

For more information about CSS selectors, see [1].

References
[1] CSS Selector Reference. https://www.w3schools.com/cssref/css_selectors.asp

See Also
extractFileText | extractHTMLText | getAttribute | htmlTree | ismissing |
readPDFFormData | tokenizedDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018b

1 Functions — Alphabetical List

1-116

https://www.w3schools.com/cssref/css_selectors.asp

fitlda
Fit latent Dirichlet allocation (LDA) model

A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers word probabilities in topics. If the model
was fit using a bag-of-n-grams model, then the software treats the n-grams as individual
words.

Syntax
mdl = fitlda(bag,numTopics)
mdl = fitlda(counts,numTopics)
mdl = fitlda(___ ,Name,Value)

Description
mdl = fitlda(bag,numTopics) fits an LDA model with numTopics topics to the bag-
of-words or bag-of-n-grams model bag.

mdl = fitlda(counts,numTopics) fits an LDA model to the documents represented
by a matrix of frequency counts.

mdl = fitlda(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Fit LDA Model

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words

 fitlda

1-117

separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with four topics.

numTopics = 4;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0812113 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.01		1.215e+03	1.000	0
1	0.03	1.0482e-02	1.128e+03	1.000	0
2	0.03	1.7190e-03	1.115e+03	1.000	0
3	0.02	4.3796e-04	1.118e+03	1.000	0
4	0.02	9.4193e-04	1.111e+03	1.000	0
5	0.02	3.7079e-04	1.108e+03	1.000	0
6	0.03	9.5777e-05	1.107e+03	1.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 4

1 Functions — Alphabetical List

1-118

 WordConcentration: 1
 TopicConcentration: 1
 CorpusTopicProbabilities: [0.2500 0.2500 0.2500 0.2500]
 DocumentTopicProbabilities: [154x4 double]
 TopicWordProbabilities: [3092x4 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Visualize the topics using word clouds.

figure
for topicIdx = 1:4
 subplot(2,2,topicIdx)
 wordcloud(mdl,topicIdx);
 title("Topic: " + topicIdx)
end

 fitlda

1-119

Fit LDA Model to Word Count Matrix

Fit an LDA model to a collection of documents represented by a word count matrix.

To reproduce the results of this example, set rng to 'default'.

rng('default')

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets. The value
counts(i,j) corresponds to the number of times the jth word of the vocabulary
appears in the ith document.

1 Functions — Alphabetical List

1-120

load sonnetsCounts.mat
size(counts)

ans = 1×2

 154 3092

Fit an LDA model with 7 topics. To suppress the verbose output, set 'Verbose' to 0.

numTopics = 7;
mdl = fitlda(counts,numTopics,'Verbose',0);

Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of
the first three input documents.

topicMixtures = transform(mdl,counts(1:3,:));
figure
barh(topicMixtures,'stacked')
xlim([0 1])
title("Topic Mixtures")
xlabel("Topic Probability")
ylabel("Document")
legend("Topic "+ string(1:numTopics),'Location','northeastoutside')

 fitlda

1-121

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

1 Functions — Alphabetical List

1-122

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0591059 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.01		1.159e+03	5.000	0
1	0.05	5.4884e-02	8.028e+02	5.000	0
2	0.05	4.7400e-03	7.778e+02	5.000	0
3	0.06	3.4597e-03	7.602e+02	5.000	0
4	0.06	3.4662e-03	7.430e+02	5.000	0
5	0.06	2.9259e-03	7.288e+02	5.000	0
6	0.06	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [1x20 double]
 DocumentTopicProbabilities: [154x20 double]
 TopicWordProbabilities: [3092x20 double]

 fitlda

1-123

 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
topicIdx = predict(mdl,newDocuments)

topicIdx = 2×1

 19
 8

Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)
wordcloud(mdl,topicIdx(2));
title("Topic " + topicIdx(2))

1 Functions — Alphabetical List

1-124

Input Arguments
bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

numTopics — Number of topics
positive integer

 fitlda

1-125

Number of topics, specified as a positive integer. For an example showing how to choose
the number of topics, see “Choose Number of Topics for LDA Model”.
Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Solver','avb' specifies to use approximate variational Bayes as the solver.

Solver Options

Solver — Solver for optimization
'cgs' (default) | 'savb' | 'avb' | 'cvb0'

Solver for optimization, specified as the comma-separated pair consisting of 'Solver'
and one of the following:

Stochastic Solver

• 'savb' – Use stochastic approximate variational Bayes [1] [2]. This solver is best
suited for large datasets and can fit a good model in fewer passes of the data.

Batch Solvers

• 'cgs' – Use collapsed Gibbs sampling [3]. This solver can be more accurate at the
cost of taking longer to run. The resume function does not support models fitted with
CGS.

1 Functions — Alphabetical List

1-126

• 'avb' – Use approximate variational Bayes [4]. This solver typically runs more quickly
than collapsed Gibbs sampling and collapsed variational Bayes, but can be less
accurate.

• 'cvb0' – Use collapsed variational Bayes, zeroth order [4] [5]. This solver can be
more accurate than approximate variational Bayes at the cost of taking longer to run.

For an example showing how to compare solvers, see “Compare LDA Solvers”.
Example: 'Solver','savb'

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

FitTopicProbabilities — Option for fitting corpus topic probabilities
true (default) | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'FitTopicConcentration' and either true or false.

The function fits the Dirichlet prior a a= ()0 1 2
p p pKL on the topic mixtures,

where a0 is the topic concentration and p pK1
, ,º are the corpus topic probabilities

which sum to 1.
Example: 'FitTopicProbabilities',false
Data Types: logical

FitTopicConcentration — Option for fitting topic concentration
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'FitTopicConcentration' and either true or false.

For batch the solvers 'cgs', 'avb', and 'cvb0', the default for
FitTopicConcentration is true. For the stochastic solver 'savb', the default is
false.

 fitlda

1-127

The function fits the Dirichlet prior a a= ()0 1 2
p p pKL on the topic mixtures,

where a0 is the topic concentration and p pK1
, ,º are the corpus topic probabilities

which sum to 1.
Example: 'FitTopicConcentration',false
Data Types: logical

InitialTopicConcentration — Initial estimate of the topic concentration
numTopics/4 (default) | nonnegative scalar

Initial estimate of the topic concentration, specified as the comma-separated pair
consisting of 'InitialTopicConcentration' and a nonnegative scalar. The function
sets the concentration per topic to TopicConcentration/NumTopics. For more
information, see “Latent Dirichlet Allocation” on page 1-131.
Example: 'InitialTopicConcentration',25

TopicOrder — Topic Order
'initial-fit-probability' (default) | 'unordered'

Topic order, specified as one of the following:

• 'initial-fit-probability' – Sort the topics by the corpus topic probabilities of
input document set (the CorpusTopicProbabilities property).

• 'unordered' – Do not sort the topics.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as the comma-separated pair consisting of
'WordConcentration' and a nonnegative scalar. The software sets the Dirichlet prior
on the topics (the word probabilities per topic) to be the symmetric Dirichlet distribution
parameter with the value WordConcentration/numWords, where numWords is the
vocabulary size of the input documents. For more information, see “Latent Dirichlet
Allocation” on page 1-131.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

1 Functions — Alphabetical List

1-128

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding

to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

This option supports batch solvers only ('cgs', 'avb', or 'cvb0').
Example: 'IterationLimit',200

Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer

Maximum number of passes through the data, specified as the comma-separated pair
consisting of 'DataPassLimit' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit', then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit' and
'MiniBatchLimit', then fitlda uses the argument that results in processing the
fewest observations.

This option supports only the stochastic ('savb') solver.
Example: 'DataPassLimit',2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

 fitlda

1-129

Maximum number of mini-batch passes, specified as the comma-separated pair consisting
of 'MiniBatchLimit' and a positive integer.

If you specify 'MiniBatchLimit' but not 'DataPassLimit', then fitlda ignores the
default value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and
'DataPassLimit', then fitlda uses the argument that results in processing the fewest
observations. The default value is ceil(numDocuments/MiniBatchSize), where
numDocuments is the number of input documents.

This option supports only the stochastic ('savb') solver.
Example: 'MiniBatchLimit',200

MiniBatchSize — Mini-batch size
1000 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit'
and a positive integer. The function processes MiniBatchSize documents in each
iteration.

This option supports only the stochastic ('savb') solver.
Example: 'MiniBatchSize',512

LearnRateDecay — Learning rate decay
0.5 (default) | positive scalar less than or equal to 1

Learning rate decay, specified as the comma-separated pair 'LearnRateDecay' and a
positive scalar less than or equal to 1.

For mini-batch t, the function sets the learning rate to h
k

() / ()t t= +1 1 , where k is the
learning rate decay.

If LearnRateDecay is close to 1, then the learning rate decays faster and the model
learns mostly from the earlier mini-batches. If LearnRateDecay is close to 0, then the
learning rate decays slower and the model continues to learn from more mini-batches. For
more information, see “Stochastic Solver” on page 1-134.

This option supports the stochastic solver only ('savb').
Example: 'LearnRateDecay',0.75

1 Functions — Alphabetical List

1-130

Display Options

ValidationData — Validation data
[] (default) | bagOfWords object | bagOfNgrams object | sparse matrix of word counts

Validation data to monitor optimization convergence, specified as the comma-separated
pair consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object,
or a sparse matrix of word counts. If the validation data is a matrix, then the data must
have the same orientation and the same number of words as the input documents.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

• 0 – Do not display verbose output.
• 1 – Display progress information.

Example: 'Verbose',0

Output Arguments
mdl — Output LDA model
ldaModel object

Output LDA model, returned as an ldaModel object.

Definitions

Latent Dirichlet Allocation
A latent Dirichlet allocation (LDA) model is a document topic model which discovers
underlying topics in a collection of documents and infers word probabilities in topics. LDA

models a collection of D documents as topic mixtures q q
1
, ,º

D , over K topics

characterized by vectors of word probabilities j j
1
, ,º

K . The model assumes that the

 fitlda

1-131

topic mixtures q q
1
, ,º

D , and the topics j j
1
, ,º

K follow a Dirichlet distribution with

concentration parameters a and b respectively.

The topic mixtures q q
1
, ,º

D are probability vectors of length K, where K is the number of

topics. The entry qdi is the probability of topic i appearing in the dth document. The topic
mixtures correspond to the rows of the DocumentTopicProbabilities property of the
ldaModel object.

The topics j j
1
, ,º

K are probability vectors of length V, where V is the number of words

in the vocabulary. The entry jiv corresponds to the probability of the vth word of the

vocabulary appearing in the ith topic. The topics j j
1
, ,º

K correspond to the columns of
the TopicWordProbabilities property of the ldaModel object.

Given the topics j j
1
, ,º

K and Dirichlet prior a on the topic mixtures, LDA assumes the
following generative process for a document:

1
Sample a topic mixture q a~ ()Dirichlet . The random variable q is a probability
vector of length K, where K is the number of topics.

2 For each word in the document:

a
Sample a topic index z ~ ()Categorical q . The random variable z is an integer
from 1 through K, where K is the number of topics.

b
Sample a word w

z
~ ()Categorical j . The random variable w is an integer from

1 through V, where V is the number of words in the vocabulary, and represents
the corresponding word in the vocabulary.

Under this generative process, the joint distribution of a document with words w w
N1

, ,º ,

with topic mixture q , and with topic indices z z
N1

, ,º is given by

1 Functions — Alphabetical List

1-132

p z w p p z p w z
n

N

n n n(, , | ,) (|) (|) (| ,),q a j q a q j=
=

’
1

where N is the number of words in the document. Summing the joint distribution over z

and then integrating over q yields the marginal distribution of a document w:

p w p p z p w z dn n n

zn

N

n

(| ,) (|) () (| ,) .|a j q a q j q
q

= Â’Ú
=1

The following diagram illustrates the LDA model as a probabilistic graphical model.
Shaded nodes are observed variables, unshaded nodes are latent variables, nodes without
outlines are the model parameters. The arrows highlight dependencies between random
variables and the plates indicate repeated nodes.

Dirichlet Distribution
The Dirichlet distribution is a continuous generalization of the multinomial distribution.
Given the number of categories K ≥ 2 , and concentration parameter a , where a is a

 fitlda

1-133

vector of positive reals of length K, the probability density function of the Dirichlet
distribution is given by

p
B i

K

i
i()

()
,q a

a
q

a
=

=

-

’
1

1

1

where B denotes the multivariate Beta function given by

B
i

K

i

i

K

i

()

)

.a
a

a
=

Ê

Ë
Á

ˆ

¯
˜

=

=

’

Â
1

1

G

G

(

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The
symmetric Dirichlet distribution is characterized by the concentration parameter a ,
where all the elements of a are the same.

Stochastic Solver
The stochastic solver processes documents in mini-batches. It updates the per-topic word
probabilities using a weighted sum of the probabilities calculated from each mini-batch,
and the probabilities from all previous mini-batches.

For mini-batch t, the solver sets the learning rate to h
k

() / ()t t= +1 1 , where k is the
learning rate decay.

The function uses the learning rate decay to update F , the matrix of word probabilities
per topic, by setting

F F F
() () (*)

(()) () ,
t t t

t t= - +
-

1
1h h

where F
(*)t

 is the matrix learned from mini-batch t, and F
()t-1

 is the matrix learned from
mini-batches 1 through t-1.

Before learning begins (when t = 0), the function initializes the initial word probabilities

per topic F
()0

 with random values.

1 Functions — Alphabetical List

1-134

Compatibility Considerations

fitlda sorts topics
Behavior changed in R2018b

Starting in R2018b, fitlda, by default, sorts the topics in descending order of the topic
probabilities of the input document set. This behavior makes it easier to find the topics
with the highest probabilities.

In previous versions, fitlda does not change the topic order. To reproduce the behavior,
set the 'TopicOrder' option to 'unordered'.

References
[1] Foulds, James, Levi Boyles, Christopher DuBois, Padhraic Smyth, and Max Welling.

"Stochastic collapsed variational Bayesian inference for latent Dirichlet
allocation." In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 446–454. ACM, 2013.

[2] Hoffman, Matthew D., David M. Blei, Chong Wang, and John Paisley. "Stochastic
variational inference." The Journal of Machine Learning Research 14, no. 1
(2013): 1303–1347.

[3] Griffiths, Thomas L., and Mark Steyvers. "Finding scientific topics." Proceedings of the
National academy of Sciences 101, no. suppl 1 (2004): 5228–5235.

[4] Asuncion, Arthur, Max Welling, Padhraic Smyth, and Yee Whye Teh. "On smoothing
and inference for topic models." In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pp. 27–34. AUAI Press, 2009.

[5] Teh, Yee W., David Newman, and Max Welling. "A collapsed variational Bayesian
inference algorithm for latent Dirichlet allocation." In Advances in neural
information processing systems, pp. 1353–1360. 2007.

See Also
bagOfNgrams | bagOfWords | fitlsa | ldaModel | logp | lsaModel | predict |
resume | topkwords | transform | wordcloud

 fitlda

1-135

Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

1 Functions — Alphabetical List

1-136

fitlsa
Fit LSA model

A latent semantic analysis (LSA) model discovers relationships between documents and
the words that they contain. An LSA model is a dimensionality reduction tool useful for
running low-dimensional statistical models on high-dimensional word counts. If the model
was fit using a bag-of-n-grams model, then the software treats the n-grams as individual
words.

Syntax
mdl = fitlsa(bag,numComponents)
mdl = fitlsa(counts,numComponents)
mdl = fitlsa(___ ,Name,Value)

Description
mdl = fitlsa(bag,numComponents) fits an LSA model with numComponents
components to the bag-of-words or bag-of-n-grams model bag.

mdl = fitlsa(counts,numComponents) fits an LSA model to the documents
represented by the matrix of word counts counts.

mdl = fitlsa(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Fit LSA Model

Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words

 fitlsa

1-137

separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)

mdl =
 lsaModel with properties:

 NumComponents: 20
 ComponentWeights: [1x20 double]
 DocumentScores: [154x20 double]
 WordScores: [3092x20 double]
 Vocabulary: [1x3092 string]
 FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
dscores = transform(mdl,newDocuments)

dscores = 2×20

1 Functions — Alphabetical List

1-138

 0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604 -0.0205 0.1127 0.0627 0.3311 -0.2327 0.1689 -0.2695 0.0228 0.1241 0.1198 0.2535 -0.0607 0.0305
 0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082 0.0522 -0.0690 -0.0330 0.0385 0.0803 -0.0373 0.0384 -0.0005 0.1943 0.0207 0.0278 0.0001 -0.0469

Fit LSA Model to Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts
corresponding to preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1×2

 154 3092

Fit LSA model with 20 components. Set the feature strength exponent to 4.

numComponents = 20;
exponent = 4;
mdl = fitlsa(counts,numComponents, ...
 'FeatureStrengthExponent',exponent)

mdl =
 lsaModel with properties:

 NumComponents: 20
 ComponentWeights: [1x20 double]
 DocumentScores: [154x20 double]
 WordScores: [3092x20 double]
 Vocabulary: [1x3092 string]
 FeatureStrengthExponent: 4

Input Arguments
bag — Input model
bagOfWords object | bagOfNgrams object

 fitlsa

1-139

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

numComponents — Number of components
positive integer

Number of components, specified as a positive integer. This value must be less than the
number of the input documents, and the vocabulary size of the input documents.
Example: 200

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FeatureStrengthExponent',4 sets the feature strength exponent to 4.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding

to documents.

This option only applies if you specify the input documents as a matrix of word counts.

1 Functions — Alphabetical List

1-140

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

FeatureStrengthExponent — Initial feature strength exponent
2 (default) | nonnegative scalar

Initial feature strength exponent, specified as a nonnegative scalar. This value scales the
feature component strengths for the documentScores, wordScores, and transform
functions.
Example: 'FeatureStrengthExponent',4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Output Arguments
mdl — Output LSA model
lsaModel object

Output LSA model, returned as an lsaModel object.

See Also
bagOfNgrams | bagOfWords | fitlda | ldaModel | lsaModel | transform

Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

 fitlsa

1-141

getAttribute
Read HTML attribute of root node of HTML tree

Syntax
str = getAttribute(tree,attr)

Description
str = getAttribute(tree,attr) returns the attribute attr of the root node of
tree. If that attribute is not set, then the function returns a missing value.

Examples

Get Attribute of HTML Tag

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are the
nodes with element name "A".

selector = "A";
subtrees = findElement(tree,selector);
subtrees(1:10)

ans =
 10×1 htmlTree:

1 Functions — Alphabetical List

1-142

 Sign In
 Products
 Solutions
 Academia
 Support
 Community
 Events
 Contact Us
 How to Buy

Get the hyperlink references using getAttribute. Specify the attribute name "href".

attr = "href";
str = getAttribute(subtrees,attr);
str(1:10)

ans = 10×1 string array
 "https://www.mathworks.com?s_tid=gn_logo"
 "https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html"
 "https://www.mathworks.com/products.html?s_tid=gn_ps"
 "https://www.mathworks.com/solutions.html?s_tid=gn_sol"
 "https://www.mathworks.com/academia.html?s_tid=gn_acad"
 "https://www.mathworks.com/support.html?s_tid=gn_supp"
 "https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc"
 "https://www.mathworks.com/company/events.html?s_tid=gn_ev"
 "https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus"
 "https://www.mathworks.com/store?s_cid=store_top_nav&s_tid=gn_store"

Input Arguments
tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.

attr — Attribute name
string scalar | character vector | scalar cell array containing a character vector

 getAttribute

1-143

Attribute name, specified as a string scalar, character vector, or a scalar cell array
containing a character vector.

Output Arguments
str — HTML attribute
string array

HTML attribute, returned as a string array

Definitions

HTML Elements
A typical HTML element contains the following components:

• Element name – Name of the HTML tag. The element name corresponds to the Name
property of the HTML tree.

• Attributes – Additional information about the tag. HTML attributes have the form
name="value", where name and value denote the attribute name and value
respectively. The attributes appear inside the opening HTML tag. To get the attribute
values from an HTML tree, use getAttribute.

• Content – Element content. The content appears between opening and closing HTML
tags. The content can be text data or nested HTML elements. To extract the text from
an htmlTree object, use extractHTMLText. To get the nested HTML elements of an
htmlTree object, use the Children property.

For example, the HTML element <a href="https://
www.mathworks.com">Home comprises the following components:

Component Value Description
Element name a Element is a

hyperlink
Attribute Attribute name href Hyperlink reference

1 Functions — Alphabetical List

1-144

Component Value Description
Attribute value "https://

www.mathworks.co
m"

Hyperlink reference
value

Content Home Text to display

See Also
extractFileText | extractHTMLText | findElement | htmlTree | ismissing |
readPDFFormData | tokenizedDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018b

 getAttribute

1-145

htmlTree
Parsed HTML tree

Description
An htmlTree object represents a parsed HTML element or node. Extract parts of interest
using the findElement function or the Children property, and extract text using the
extractHTMLText function.

Creation

Syntax
tree = htmlTree(code)

Description
tree = htmlTree(code) parses the HTML code in the string code and returns the
resulting tree structure.

Input Arguments
code — HTML code
string scalar | character vector | scalar cell array containing a character vector

HTML code, specified as a string scalar, a character vector, or a scalar cell array
containing a character vector.

Tip

• To read HTML code from a web page, use webread.
• To extract text from an HTML file, use extractFileText.

1 Functions — Alphabetical List

1-146

Example: "MathWorks"
Data Types: char | string | cell

Properties
Children — Direct descendants of element
htmlTree array

Direct descendants of the element, specified as an htmlTree array.

Parent — Parent node
htmlTree object

Parent node in the tree, specified as an htmlTree object.

If the HTML tree is a root node, then the value of Parent is missing.

Name — HTML element name
string scalar

HTML element name, specified as a string scalar.

For more information, see “HTML Elements” on page 1-151.

Object Functions
findElement Find elements in HTML tree
getAttribute Read HTML attribute of root node of HTML tree
extractHTMLText Extract text from HTML
ismissing Find HTML trees without values

Examples

Parse HTML Code

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using webread.

 htmlTree

1-147

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

View the element name of the root node of the tree.

tree.Name

ans =
"HTML"

View the children of the root node.

tree.Children

ans =
 4×1 htmlTree:

 (1,1)
 (2,1) <HEAD><TITLE>Text Analytics Toolbox Documentation</TITLE><META charse…
 (3,1)
 (4,1) <BODY id="responsive_offcanvas"><!-- Mobile TopNav: Start --><DIV cla…

Extract the text from the HTML tree using extractHTMLText.

str = extractHTMLText(tree)

str =
 "Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing, analyzing, and modeling text data. Models created with the toolbox can be used in applications such as sentiment analysis, predictive maintenance, and topic modeling.

 Text Analytics Toolbox includes tools for processing raw text from sources such as equipment logs, news feeds, surveys, operator reports, and social media. You can extract text from popular file formats, preprocess raw text, extract individual words, convert text into numerical representations, and build statistical models.

 Using machine learning techniques such as LSA, LDA, and word embeddings, you can find clusters and create features from high-dimensional text datasets. Features created with Text Analytics Toolbox can be combined with features from other data sources to build machine learning models that take advantage of textual, numeric, and other types of data."

Find Elements in HTML Tree

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using the webread function.

1 Functions — Alphabetical List

1-148

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are nodes
with element name "A".

selector = "A";
subtrees = findElement(tree,selector);

View the first few subtrees.

subtrees(1:10)

ans =
 10×1 htmlTree:

 (1,1) <A class="svg_link navbar-brand" href="https://www.mathworks.com?s_ti…
 (2,1) <A class="mwa-nav_login" href="https://www.mathworks.com/login?uri=ht…
 (3,1) Product…
 (4,1) Solut…
 (5,1) Acade…
 (6,1) Suppor…
 (7,1) Commu…
 (8,1) E…
 (9,1) <A href="https://www.mathworks.com/company/aboutus/contact_us.html?s_…
 (10,1) <A href="https://www.mathworks.com/store?s_cid=store_top_nav&s_ti…

Extract the text from the subtrees using extractHTMLText. The result contains the link
text from each link on the page.

str = extractHTMLText(subtrees);
str(1:10)

ans = 10×1 string array
 ""
 "Sign In"
 "Products"
 "Solutions"
 "Academia"
 "Support"

 htmlTree

1-149

 "Community"
 "Events"
 "Contact Us"
 "How to Buy"

Get Attribute of HTML Tag

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Find all the hyperlinks in the HTML tree using findElement. The hyperlinks are the
nodes with element name "A".

selector = "A";
subtrees = findElement(tree,selector);
subtrees(1:10)

ans =
 10×1 htmlTree:

 Sign In
 Products
 Solutions
 Academia
 Support
 Community
 Events
 Contact Us
 How to Buy

Get the hyperlink references using getAttribute. Specify the attribute name "href".

1 Functions — Alphabetical List

1-150

attr = "href";
str = getAttribute(subtrees,attr);
str(1:10)

ans = 10×1 string array
 "https://www.mathworks.com?s_tid=gn_logo"
 "https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/index.html"
 "https://www.mathworks.com/products.html?s_tid=gn_ps"
 "https://www.mathworks.com/solutions.html?s_tid=gn_sol"
 "https://www.mathworks.com/academia.html?s_tid=gn_acad"
 "https://www.mathworks.com/support.html?s_tid=gn_supp"
 "https://www.mathworks.com/matlabcentral/?s_tid=gn_mlc"
 "https://www.mathworks.com/company/events.html?s_tid=gn_ev"
 "https://www.mathworks.com/company/aboutus/contact_us.html?s_tid=gn_cntus"
 "https://www.mathworks.com/store?s_cid=store_top_nav&s_tid=gn_store"

Definitions

HTML Elements
A typical HTML element contains the following components:

• Element name – Name of the HTML tag. The element name corresponds to the Name
property of the HTML tree.

• Attributes – Additional information about the tag. HTML attributes have the form
name="value", where name and value denote the attribute name and value
respectively. The attributes appear inside the opening HTML tag. To get the attribute
values from an HTML tree, use getAttribute.

• Content – Element content. The content appears between opening and closing HTML
tags. The content can be text data or nested HTML elements. To extract the text from
an htmlTree object, use extractHTMLText. To get the nested HTML elements of an
htmlTree object, use the Children property.

For example, the HTML element <a href="https://
www.mathworks.com">Home comprises the following components:

 htmlTree

1-151

Component Value Description
Element name a Element is a

hyperlink
Attribute Attribute name href Hyperlink reference

Attribute value "https://
www.mathworks.co
m"

Hyperlink reference
value

Content Home Text to display

See Also
extractHTMLText | findElement | getAttribute | ismissing | readPDFFormData
| tokenizedDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018b

1 Functions — Alphabetical List

1-152

ind2word
Map encoding index to word

Syntax
words = ind2word(enc,M)

Description
words = ind2word(enc,M) returns the words corresponding to the encoding indices in
M according to the word encoding enc.

Examples

Map Encoding Indices to Words

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans =
 10x1 tokenizedDocument:

 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet

 ind2word

1-153

 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

enc =
 wordEncoding with properties:

 NumWords: 3092
 Vocabulary: [1x3092 string]

View the words corresponding to indices 1, 3, and 5 using the ind2word function.

idx = [1 3 5];
words = ind2word(enc,idx)

words = 1x3 string array
 "fairest" "desire" "thereby"

Input Arguments
enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

M — Word encoding indices
vector of positive integers

Word encoding indices, specified as a vector of positive integers.

1 Functions — Alphabetical List

1-154

Output Arguments
words — Output words
string vector

Output words, returned as a string vector.

See Also
doc2sequence | fastTextWordEmbedding | isVocabularyWord |
tokenizedDocument | vec2word | word2ind | wordEmbedding |
wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b

 ind2word

1-155

ismember
(To be removed) Test if word is member of word embedding

Note ismember will be removed in a future release. Use isVocabularyWord instead.
For more information, see “Compatibility Considerations”.

Syntax
tf = ismember(emb,words)

Description
tf = ismember(emb,words) returns an array containing logical 1 (true) where the
word in words is a member of the word embedding emb. Elsewhere, the array contains
logical 0 (false).

Examples

Test If Word Is Member of Embedding

Test to determine if words are members of a word embedding.

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding

emb =

 wordEmbedding with properties:

1 Functions — Alphabetical List

1-156

 Dimension: 300
 Vocabulary: [1×1000000 string]

Test if the words "I", "love", and "fastTextWordEmbedding" are in the word
embedding.

words = ["I" "love" "fastTextWordEmbedding"];
tf = ismember(emb,words)

tf =

 1×3 logical array

 1 1 0

Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

Compatibility Considerations

ismember will be removed
Warns starting in R2018b

To update your code, for wordEmbedding object input, change the function name from
ismember to isVocabularyWord. You do not need to change the arguments. The
syntaxes are equivalent.

 ismember

1-157

See Also
fastTextWordEmbedding | isVocabularyWord | tokenizedDocument | vec2word |
word2vec | wordEmbedding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-158

ismissing
Find HTML trees without values

Syntax
tf = ismissing(tree)

Description
tf = ismissing(tree) returns a logical array that indicates which elements of tree
do not reference HTML trees. For example, if tree is given by the Parent property of a
root node, then the function returns 1 (true).

Examples

Test If HTML Tree Is Root Node

To test if an HTML tree object represents a root node, test that the Parent property is
missing.

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.

tree = htmlTree(code);

Test if the parent of tree references an HTML tree.

tf = ismissing(tree.Parent)

 ismissing

1-159

tf = logical
 1

Since tree represents the root node of the HTML tree, the value of tree.Parent is
missing and the ismissing function returns 1 (true).

Input Arguments
tree — HTML tree
htmlTree array

HTML tree, specified as an htmlTree array.

See Also
extractFileText | extractHTMLText | findElement | getAttribute | htmlTree |
readPDFFormData | tokenizedDocument

Topics
“Parse HTML and Extract Text Content”
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018b

1 Functions — Alphabetical List

1-160

isVocabularyWord
Test if word is member of word embedding or encoding

Syntax
tf = isVocabularyWord(emb,words)
tf = isVocabularyWord(enc,words)

Description
tf = isVocabularyWord(emb,words) tests if the elements of words are members of
the word embedding emb. The function returns a logical array containing 1 (true) where
the words are members of the word embedding. Elsewhere, the array contains 0 (false).

tf = isVocabularyWord(enc,words) tests if the elements of words are members of
the word encoding enc.

Examples

Test If Word Is Member of Embedding

Test to determine if words are members of a word embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This
function requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token
Word Embedding support package. If this support package is not installed, then the
function provides a download link.

emb = fastTextWordEmbedding

emb =
 wordEmbedding with properties:

 Dimension: 300

 isVocabularyWord

1-161

 Vocabulary: [1×999994 string]

Test if the words "I", "love", and "fastTextWordEmbedding" are in the word
embedding.

words = ["I" "love" "fastTextWordEmbedding"];
tf = isVocabularyWord(emb,words)

tf = 1×3 logical array

 1 1 0

Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

See Also
doc2sequence | fastTextWordEmbedding | tokenizedDocument | vec2word |
word2vec | wordEmbedding

1 Functions — Alphabetical List

1-162

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b

 isVocabularyWord

1-163

join
Combine multiple bag-of-words or bag-of-n-grams models

Syntax
newBag = join(bag)
newBag = join(bag,dim)

Description
newBag = join(bag) combines the elements in the array bag by merging the
frequency counts. The function combines the elements along the first dimension not equal
to 1.

newBag = join(bag,dim) combines the elements in the array bag along the dimension
dim.

Examples

Combine Bag-of-Words Models

Create an array of two bags-of-words models from tokenized documents.

str = [...
 "an example of a short sentence"
 "a second short sentence"];
documents = tokenizedDocument(str);
bag(1) = bagOfWords(documents(1));
bag(2) = bagOfWords(documents(2))

bag =
 1x2 bagOfWords array with properties:

 Counts
 Vocabulary

1 Functions — Alphabetical List

1-164

 NumWords
 NumDocuments

Combine the bag-of-words models using join.

bag = join(bag)

bag =
 bagOfWords with properties:

 Counts: [2x7 double]
 Vocabulary: [1x7 string]
 NumWords: 7
 NumDocuments: 2

Create Bag-of-Words Model in Parallel

If your text data is contained in multiple files in a folder, then you can import the text data
and create a bag-of-words model in parallel using parfor. If you have Parallel Computing
Toolbox™ installed, then the parfor loop runs in parallel, otherwise, it runs in serial. Use
join to combine an array of bag-of-words models into one model.

Create a bag-of-words model from a collection of files. The examples sonnets have file
names "exampleSonnetN.txt", where N is the number of the sonnet. Get a list of the
files and their locations using dir.

fileLocation = fullfile(matlabroot,'examples','textanalytics','exampleSonnet*.txt');
fileInfo = dir(fileLocation)

fileInfo = 5x1 struct array with fields:
 name
 folder
 date
 bytes
 isdir
 datenum

Initialize an empty bag-of-words model and then loop over the files and create an array of
bag-of-words models.

 join

1-165

bag = bagOfWords;

numFiles = numel(fileInfo);
parfor i = 1:numFiles
 f = fileInfo(i);
 filename = fullfile(f.folder,f.name);

 textData = extractFileText(filename);
 document = tokenizedDocument(textData);
 bag(i) = bagOfWords(document);
end

Starting parallel pool (parpool) using the 'local' profile ...
connected to 12 workers.

Combine the bag-of-words models using join.

bag = join(bag)

bag =
 bagOfWords with properties:

 Counts: [5x3275 double]
 Vocabulary: [1x3275 string]
 NumWords: 3275
 NumDocuments: 5

Input Arguments
bag — Array of bag-of-words or bag-of-n-grams models
bagOfWords array | bagOfNgrams array

Array of bag-of-words or bag-of-n-grams models, specified as a bagOfWords array or a
bagOfNgrams array. If bag is a bagOfNgrams array, then each element to be joined must
have the same value for the NgramLengths property.

dim — Dimension along which to join models
positive integer

Dimension along which to join models, specified as a positive integer. If dim is not
specified, then the default is the first dimension with a size that does not equal 1.

1 Functions — Alphabetical List

1-166

Output Arguments
newBag — Output model
bagOfWords array | bagOfNgrams array

Output model, returned as a bagOfWords object or a bagOfNgrams object. The type of
newBag is the same as the type of bag. newBag has the same data type as the input
model and has a size of 1 along the dimension being joined.

See Also
addDocument | bagOfNgrams | bagOfWords | encode | removeDocument |
removeEmptyDocuments | tfidf | tokenizedDocument | topkngrams | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a

 join

1-167

joinWords
Convert documents to string by joining words

Syntax
newStr = joinWords(documents)
newStr = joinWords(documents,delim)

Description
newStr = joinWords(documents) converts a tokenizedDocument array to a string
array by joining the words in each document with a space.

newStr = joinWords(documents,delim) joins the words with delimiter delim
instead of a space.

Examples

Convert Documents to String by Joining Words

Convert a tokenizedDocument array to a string array by joining the words with a space.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

str = joinWords(documents)

1 Functions — Alphabetical List

1-168

str = 2x1 string array
 "an example of a short sentence"
 "a second short sentence"

Convert a tokenizedDocument array to a string array by joining the words with an
underscore.

str = joinWords(documents,"_")

str = 2x1 string array
 "an_example_of_a_short_sentence"
 "a_second_short_sentence"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

delim — Delimiter to join words
string scalar | character vector | scalar cell array

Delimiter to join words, specified as a string scalar, character vector, or scalar cell array
containing a character vector.
Example: "_"
Example: '_'
Example: {'_'}
Data Types: char | string | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

 joinWords

1-169

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

See Also
context | doc2cell | doclength | string | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-170

ldaModel
Latent Dirichlet allocation (LDA) model

Description
A latent Dirichlet allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers word probabilities in topics. If the model
was fit using a bag-of-n-grams model, then the software treats the n-grams as individual
words.

Creation
Create an LDA model using the fitlda function.

Properties
NumTopics — Number of topics
positive integer

Number of topics in the LDA model, specified as a positive integer.

TopicConcentration — Topic concentration
positive scalar

Topic concentration, specified as a positive scalar. The function sets the concentration per
topic to TopicConcentration/NumTopics. For more information, see “Latent Dirichlet
Allocation” on page 1-184.

WordConcentration — Word concentration
1 (default) | nonnegative scalar

Word concentration, specified as a nonnegative scalar. The software sets the
concentration per word to WordConcentration/numWords, where numWords is the
vocabulary size of the input documents. For more information, see “Latent Dirichlet
Allocation” on page 1-184.

 ldaModel

1-171

CorpusTopicProbabilities — Topic probabilities of input document set
vector

Topic probabilities of input document set, specified as a vector. The corpus topic
probabilities of an LDA model are the probabilities of observing each topic in the entire
data set used to fit the LDA model. CorpusTopicProbabilities is a 1-by-K vector
where K is the number of topics. The kth entry of CorpusTopicProbabilities
corresponds to the probability of observing topic k.

DocumentTopicProbabilities — Topic probabilities per input document
matrix

Topic probabilities per input document, specified as a matrix. The document topic
probabilities of an LDA model are the probabilities of observing each topic in each
document used to fit the LDA model. DocumentTopicProbabilities is a D-by-K matrix
where D is the number of documents used to fit the LDA model, and K is the number of
topics. The (d,k)th entry of DocumentTopicProbabilities corresponds to the
probability of observing topic k in document d.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros),
then the corresponding columns of DocumentTopicProbabilities and
TopicWordProbabilities are zeros.

The order of the rows in DocumentTopicProbabilities corresponds to the order of
the documents in the training data.

TopicWordProbabilities — Word probabilities per topic
matrix

Word probabilities per topic, specified as a matrix. The topic word probabilities of an LDA
model are the probabilities of observing each word in each topic of the LDA model.
TopicWordProbabilities is a V-by-K matrix, where V is the number of words in
Vocabulary and K is the number of topics. The (v,k)th entry of
TopicWordProbabilities corresponds to the probability of observing word v in topic
k.

If any the topics have zero probability (CorpusTopicProbabilities contains zeros),
then the corresponding columns of DocumentTopicProbabilities and
TopicWordProbabilities are zeros.

The order of the rows in TopicWordProbabilities corresponds to the order of the
words in Vocabulary.

1 Functions — Alphabetical List

1-172

TopicOrder — Topic Order
'initial-fit-probability' (default) | 'unordered'

Topic order, specified as one of the following:

• 'initial-fit-probability' – Sort the topics by the corpus topic probabilities of
the initial model fit. These probabilities are the CorpusTopicProbabilities
property of the initial ldaModel object returned by fitlda. The resume function
does not reorder the topics of the resulting ldaModel objects.

• 'unordered' – Do not order topics.

FitInfo — Information recorded when fitting LDA model
struct

Information recorded when fitting LDA model, specified as a struct with the following
fields:

• TerminationCode – Status of optimization upon exit

• 0 – Iteration limit reached.
• 1 – Tolerance on log-likelihood satisfied.

• TerminationStatus – Explanation of the returned termination code
• NumIterations – Number of iterations performed
• NegativeLogLikelihood – Negative log-likelihood for the data passed to fitlda
• Perplexity – Perplexity for the data passed to fitlda
• Solver – Name of the solver used
• History – Struct holding the optimization history
• StochasticInfo – Struct holding information for stochastic solvers

Data Types: struct

Vocabulary — List of words in the model
string vector

List of words in the model, specified as a string vector.
Data Types: string

 ldaModel

1-173

Object Functions
logp Document log-probabilities and goodness of fit of LDA model
predict Predict top LDA topics of documents
resume Resume fitting LDA model
topkwords Most important words in bag-of-words model or LDA topic
transform Transform documents into lower-dimensional space
wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams

model, or LDA model

Examples
Fit LDA Model

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with four topics.

1 Functions — Alphabetical List

1-174

numTopics = 4;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0812113 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.01		1.215e+03	1.000	0
1	0.03	1.0482e-02	1.128e+03	1.000	0
2	0.03	1.7190e-03	1.115e+03	1.000	0
3	0.02	4.3796e-04	1.118e+03	1.000	0
4	0.02	9.4193e-04	1.111e+03	1.000	0
5	0.02	3.7079e-04	1.108e+03	1.000	0
6	0.03	9.5777e-05	1.107e+03	1.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 4
 WordConcentration: 1
 TopicConcentration: 1
 CorpusTopicProbabilities: [0.2500 0.2500 0.2500 0.2500]
 DocumentTopicProbabilities: [154x4 double]
 TopicWordProbabilities: [3092x4 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Visualize the topics using word clouds.

figure
for topicIdx = 1:4
 subplot(2,2,topicIdx)
 wordcloud(mdl,topicIdx);
 title("Topic: " + topicIdx)
end

 ldaModel

1-175

Highest Probability Words of LDA Topic

Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

1 Functions — Alphabetical List

1-176

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents);

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);

Find the top 20 words of the first topic.

k = 20;
topicIdx = 1;
tbl = topkwords(mdl,k,topicIdx)

tbl=20×2 table
 Word Score
 ________ _________

 "eyes" 0.11155
 "beauty" 0.05777
 "hath" 0.055778
 "still" 0.049801
 "true" 0.043825
 "mine" 0.033865
 "find" 0.031873
 "black" 0.025897
 "look" 0.023905
 "tis" 0.023905
 "kind" 0.021913
 "seen" 0.021913
 "found" 0.017929
 "sin" 0.015937
 "three" 0.013945
 "golden" 0.0099608
 ⋮

Find the top 20 words of the first topic and use inverse mean scaling on the scores.

tbl = topkwords(mdl,k,topicIdx,'Scaling','inversemean')

 ldaModel

1-177

tbl=20×2 table
 Word Score
 ________ ________

 "eyes" 1.2718
 "beauty" 0.59022
 "hath" 0.5692
 "still" 0.50269
 "true" 0.43719
 "mine" 0.32764
 "find" 0.32544
 "black" 0.25931
 "tis" 0.23755
 "look" 0.22519
 "kind" 0.21594
 "seen" 0.21594
 "found" 0.17326
 "sin" 0.15223
 "three" 0.13143
 "golden" 0.090698
 ⋮

Create a word cloud using the scaled scores as the size data.

figure
wordcloud(tbl.Word,tbl.Score);

1 Functions — Alphabetical List

1-178

Document Topic Probabilities of LDA Model

Get the document topic probabilities (also known as topic mixtures) of the documents
used to fit an LDA model.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

 ldaModel

1-179

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents);

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0)

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [1x20 double]
 DocumentTopicProbabilities: [154x20 double]
 TopicWordProbabilities: [3092x20 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

View the topic probabilities of the first document in the training data.

topicMixtures = mdl.DocumentTopicProbabilities;
figure
bar(topicMixtures(1,:))
title("Document 1 Topic Probabilities")
xlabel("Topic Index")
ylabel("Probability")

1 Functions — Alphabetical List

1-180

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

 ldaModel

1-181

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0591059 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.01		1.159e+03	5.000	0
1	0.05	5.4884e-02	8.028e+02	5.000	0
2	0.05	4.7400e-03	7.778e+02	5.000	0
3	0.06	3.4597e-03	7.602e+02	5.000	0
4	0.06	3.4662e-03	7.430e+02	5.000	0
5	0.06	2.9259e-03	7.288e+02	5.000	0
6	0.06	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [1x20 double]
 DocumentTopicProbabilities: [154x20 double]
 TopicWordProbabilities: [3092x20 double]

1 Functions — Alphabetical List

1-182

 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
topicIdx = predict(mdl,newDocuments)

topicIdx = 2×1

 19
 8

Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)
wordcloud(mdl,topicIdx(2));
title("Topic " + topicIdx(2))

 ldaModel

1-183

Definitions

Latent Dirichlet Allocation
A latent Dirichlet allocation (LDA) model is a document topic model which discovers
underlying topics in a collection of documents and infers word probabilities in topics. LDA

models a collection of D documents as topic mixtures q q
1
, ,º

D , over K topics

characterized by vectors of word probabilities j j
1
, ,º

K . The model assumes that the

1 Functions — Alphabetical List

1-184

topic mixtures q q
1
, ,º

D , and the topics j j
1
, ,º

K follow a Dirichlet distribution with

concentration parameters a and b respectively.

The topic mixtures q q
1
, ,º

D are probability vectors of length K, where K is the number of

topics. The entry qdi is the probability of topic i appearing in the dth document. The topic
mixtures correspond to the rows of the DocumentTopicProbabilities property of the
ldaModel object.

The topics j j
1
, ,º

K are probability vectors of length V, where V is the number of words

in the vocabulary. The entry jiv corresponds to the probability of the vth word of the

vocabulary appearing in the ith topic. The topics j j
1
, ,º

K correspond to the columns of
the TopicWordProbabilities property of the ldaModel object.

Given the topics j j
1
, ,º

K and Dirichlet prior a on the topic mixtures, LDA assumes the
following generative process for a document:

1
Sample a topic mixture q a~ ()Dirichlet . The random variable q is a probability
vector of length K, where K is the number of topics.

2 For each word in the document:

a
Sample a topic index z ~ ()Categorical q . The random variable z is an integer
from 1 through K, where K is the number of topics.

b
Sample a word w

z
~ ()Categorical j . The random variable w is an integer from

1 through V, where V is the number of words in the vocabulary, and represents
the corresponding word in the vocabulary.

Under this generative process, the joint distribution of a document with words w w
N1

, ,º ,

with topic mixture q , and with topic indices z z
N1

, ,º is given by

 ldaModel

1-185

p z w p p z p w z
n

N

n n n(, , | ,) (|) (|) (| ,),q a j q a q j=
=

’
1

where N is the number of words in the document. Summing the joint distribution over z

and then integrating over q yields the marginal distribution of a document w:

p w p p z p w z dn n n

zn

N

n

(| ,) (|) () (| ,) .|a j q a q j q
q

= Â’Ú
=1

The following diagram illustrates the LDA model as a probabilistic graphical model.
Shaded nodes are observed variables, unshaded nodes are latent variables, nodes without
outlines are the model parameters. The arrows highlight dependencies between random
variables and the plates indicate repeated nodes.

Dirichlet Distribution
The Dirichlet distribution is a continuous generalization of the multinomial distribution.
Given the number of categories K ≥ 2 , and concentration parameter a , where a is a

1 Functions — Alphabetical List

1-186

vector of positive reals of length K, the probability density function of the Dirichlet
distribution is given by

p
B i

K

i
i()

()
,q a

a
q

a
=

=

-

’
1

1

1

where B denotes the multivariate Beta function given by

B
i

K

i

i

K

i

()

)

.a
a

a
=

Ê

Ë
Á

ˆ

¯
˜

=

=

’

Â
1

1

G

G

(

A special case of the Dirichlet distribution is the symmetric Dirichlet distribution. The
symmetric Dirichlet distribution is characterized by the concentration parameter a ,
where all the elements of a are the same.

See Also
bagOfWords | fitlda | logp | lsaModel | predict | resume | topkwords |
transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

 ldaModel

1-187

lsaModel
Latent semantic analysis (LSA) model

Description
A latent semantic analysis (LSA) model discovers relationships between documents and
the words that they contain. An LSA model is a dimensionality reduction tool useful for
running low-dimensional statistical models on high-dimensional word counts. If the model
was fit using a bag-of-n-grams model, then the software treats the n-grams as individual
words.

Creation
Create an LSA model using the fitlsa function.

Properties
NumComponents — Number of components
nonnegative integer

Number of components, specified as a nonnegative integer. The number of components is
the dimensionality of the result vectors. Changing the value of NumComponents changes
the length of the resulting vectors, without influencing the initial values. You can only set
NumComponents to be less than or equal to the number of components used to fit the LSA
model.
Example: 100

FeatureStrengthExponent — Exponent scaling feature component strengths
nonnegative scalar

Exponent scaling feature component strengths for the DocumentScores and
WordScores properties, and the transform function, specified as a nonnegative scalar.
The LSA model scales the properties by their singular values (feature strengths), with an
exponent of FeatureStrengthExponent/2.

1 Functions — Alphabetical List

1-188

Example: 2.5

ComponentWeights — Component weights
numeric vector

Component weights, specified as a numeric vector. The component weights of an LSA
model are the singular values, squared. ComponentWeights is a 1-by-NumComponents
vector where the jth entry corresponds to the weight of component j. The components are
ordered by decreasing weights. You can use the weights to estimate the importance of
components.

DocumentScores — Score vectors per input document
matrix

Score vectors per input document, specified as a matrix. The document scores of an LSA
model are the score vectors in lower dimensional space of each document used to fit the
LSA model. DocumentScores is a D-by-NumComponents matrix where D is the number
of documents used to fit the LSA model. The (i,j)th entry of DocumentScores
corresponds to the score of component j in document i.

WordScores — Word scores per component
matrix

Word scores per component, specified as a matrix. The word scores of an LSA model are
the scores of each word in each component of the LSA model. WordScores is a V-by-
NumComponents matrix where V is the number of words in Vocabulary. The (v,j)th entry
of WordScores corresponds to the score of word v in component j.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

Object Functions
transform Transform documents into lower-dimensional space

Examples

 lsaModel

1-189

Fit LSA Model

Fit a Latent Semantic Analysis model to a collection of documents.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LSA model with 20 components.

numComponents = 20;
mdl = fitlsa(bag,numComponents)

mdl =
 lsaModel with properties:

 NumComponents: 20
 ComponentWeights: [1x20 double]
 DocumentScores: [154x20 double]
 WordScores: [3092x20 double]
 Vocabulary: [1x3092 string]
 FeatureStrengthExponent: 2

Transform new documents into lower dimensional space using the LSA model.

1 Functions — Alphabetical List

1-190

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
dscores = transform(mdl,newDocuments)

dscores = 2×20

 0.1338 0.1623 0.1680 -0.0541 -0.2464 -0.0134 0.2604 -0.0205 0.1127 0.0627 0.3311 -0.2327 0.1689 -0.2695 0.0228 0.1241 0.1198 0.2535 -0.0607 0.0305
 0.2547 0.5576 -0.0095 0.5660 -0.0643 -0.1236 -0.0082 0.0522 -0.0690 -0.0330 0.0385 0.0803 -0.0373 0.0384 -0.0005 0.1943 0.0207 0.0278 0.0001 -0.0469

Calculate Document Similarity

Create a bag-of-words model from some text data.

str = [
 "I enjoy ham, eggs and bacon for breakfast."
 "I sometimes skip breakfast."
 "I eat eggs and ham for dinner."
];
documents = tokenizedDocument(str);
bag = bagOfWords(documents);

Fit an LSA model with two components. Set the feature strength exponent to 0.5.

numComponents = 2;
exponent = 0.5;
mdl = fitlsa(bag,numComponents, ...
 'FeatureStrengthExponent',exponent)

mdl =
 lsaModel with properties:

 NumComponents: 2
 ComponentWeights: [16.2268 4.0000]
 DocumentScores: [3x2 double]
 WordScores: [14x2 double]
 Vocabulary: [1x14 string]
 FeatureStrengthExponent: 0.5000

Calculate the cosine distance between the documents score vectors using pdist. View
the distances in a matrix D using squareform. D(i,j) denotes the distance between
document i and j.

 lsaModel

1-191

dscores = mdl.DocumentScores;
distances = pdist(dscores,'cosine');
D = squareform(distances)

D = 3×3

 0 0.6244 0.1489
 0.6244 0 1.1670
 0.1489 1.1670 0

Visualize the similarity between documents by plotting the document score vectors in a
compass plot.

figure
compass(dscores(1,1),dscores(1,2),'red')
hold on
compass(dscores(2,1),dscores(2,2),'green')
compass(dscores(3,1),dscores(3,2),'blue')
hold off
title("Document Scores")
legend(["Document 1" "Document 2" "Document 3"],'Location','bestoutside')

1 Functions — Alphabetical List

1-192

See Also
bagOfWords | fitlsa | ldaModel | lsaModel | transform

Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

 lsaModel

1-193

Introduced in R2017b

1 Functions — Alphabetical List

1-194

logp
Document log-probabilities and goodness of fit of LDA model

Syntax
logProb = logp(ldaMdl,documents)
logProb = logp(ldaMdl,counts)
logProb = logp(ldaMdl,bag)
[logProb,ppl] = logp(___)
___ = logp(___ ,Name,Value)

Description
logProb = logp(ldaMdl,documents) returns the log-probabilities of documents
under the LDA model ldaMdl.

logProb = logp(ldaMdl,counts) returns the log-probabilities of the documents
represented by the matrix of word counts counts.

logProb = logp(ldaMdl,bag) returns the log-probabilities of the documents
represented by a bag-of-words or bag-of-n-grams model.

[logProb,ppl] = logp(___) returns the perplexity computed from the log-
probabilities.

___ = logp(___ ,Name,Value) specifies additional options using one or more name-
value pair arguments.

Examples

Calculate Document Log-Probabilities

To reproduce the results in this example, set rng to 'default'.

 logp

1-195

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);

Compute the document log-probabilities of the training documents and show them in a
histogram.

logProbabilities = logp(mdl,documents);
figure
histogram(logProbabilities)
xlabel("Log Probability")
ylabel("Frequency")
title("Document Log-Probabilities")

1 Functions — Alphabetical List

1-196

Identify the three documents with the lowest log-probability. A low log-probability may
suggest that the document may be an outlier.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans = 3×1

 146
 19
 65

documents(idx(1:3))

 logp

1-197

ans =
 3x1 tokenizedDocument:

 76 tokens: poor soul centre sinful earth sinful earth rebel powers array why dost thou pine suffer dearth painting thy outward walls costly gay why large cost short lease dost thou upon thy fading mansion spend shall worms inheritors excess eat up thy charge thy bodys end soul live thou upon thy servants loss let pine aggravate thy store buy terms divine selling hours dross fed rich shall thou feed death feeds men death once dead theres dying
 76 tokens: devouring time blunt thou lions paws make earth devour own sweet brood pluck keen teeth fierce tigers jaws burn longlivd phoenix blood make glad sorry seasons thou fleets whateer thou wilt swiftfooted time wide world fading sweets forbid thee heinous crime o carve thy hours loves fair brow nor draw lines thine antique pen thy course untainted allow beautys pattern succeeding men yet thy worst old time despite thy wrong love shall verse ever live young
 73 tokens: brass nor stone nor earth nor boundless sea sad mortality oersways power rage shall beauty hold plea whose action stronger flower o shall summers honey breath hold against wrackful siege battering days rocks impregnable stout nor gates steel strong time decays o fearful meditation alack shall times best jewel times chest lie hid strong hand hold swift foot back spoil beauty forbid o none unless miracle might black ink love still shine bright

Calculate Document Log-Probabilities from Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1×2

 154 3092

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.0826479 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.02		1.159e+03	5.000	0
1	0.07	5.4884e-02	8.028e+02	5.000	0
2	0.07	4.7400e-03	7.778e+02	5.000	0
3	0.07	3.4597e-03	7.602e+02	5.000	0
4	0.09	3.4662e-03	7.430e+02	5.000	0
5	0.08	2.9259e-03	7.288e+02	5.000	0
6	0.07	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

1 Functions — Alphabetical List

1-198

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [1x20 double]
 DocumentTopicProbabilities: [154x20 double]
 TopicWordProbabilities: [3092x20 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Compute the document log-probabilities of the training documents. Specify to draw 500
samples for each document.

numSamples = 500;
logProbabilities = logp(mdl,counts, ...
 'NumSamples',numSamples);

Show the document log-probabilities in a histogram.

figure
histogram(logProbabilities)
xlabel("Log Probability")
ylabel("Frequency")
title("Document Log-Probabilities")

 logp

1-199

Identify the indices of the three documents with the lowest log-probability.

[~,idx] = sort(logProbabilities);
idx(1:3)

ans = 3×1

 146
 19
 65

1 Functions — Alphabetical List

1-200

Compare Goodness of Fit

Compare the goodness of fit for two LDA models by calculating the perplexity of a held-
out test set of documents.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Set aside 10% of the documents at random for testing.

numDocuments = numel(documents);
cvp = cvpartition(numDocuments,'HoldOut',0.1);
documentsTrain = documents(cvp.training);
documentsTest = documents(cvp.test);

Create a bag-of-words model from the training documents.

bag = bagOfWords(documentsTrain)

bag =
 bagOfWords with properties:

 Counts: [139x2909 double]
 Vocabulary: [1x2909 string]
 NumWords: 2909
 NumDocuments: 139

Fit an LDA model with 20 topics to the bag-of-words model. To suppress verbose output,
set 'Verbose' to 0.

numTopics = 20;
mdl1 = fitlda(bag,numTopics,'Verbose',0);

 logp

1-201

View information about the model fit.

mdl1.FitInfo

ans = struct with fields:
 TerminationCode: 1
 TerminationStatus: "Relative tolerance on log-likelihood satisfied."
 NumIterations: 26
 NegativeLogLikelihood: 5.6915e+04
 Perplexity: 742.7118
 Solver: "cgs"
 History: [1x1 struct]

Compute the perplexity of the held-out test set.

[~,ppl1] = logp(mdl1,documentsTest)

ppl1 = 781.6078

Fit an LDA model with 40 topics to the bag-of-words model.

numTopics = 40;
mdl2 = fitlda(bag,numTopics,'Verbose',0);

View information about the model fit.

mdl2.FitInfo

ans = struct with fields:
 TerminationCode: 1
 TerminationStatus: "Relative tolerance on log-likelihood satisfied."
 NumIterations: 37
 NegativeLogLikelihood: 5.4466e+04
 Perplexity: 558.8685
 Solver: "cgs"
 History: [1x1 struct]

Compute the perplexity of the held-out test set.

[~,ppl2] = logp(mdl2,documentsTest)

ppl2 = 808.6602

A lower perplexity suggests that the model may be better fit to the held-out test data.

1 Functions — Alphabetical List

1-202

Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumSamples',500 specifies to draw 500 samples for each document

 logp

1-203

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding

to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

NumSamples — Number of samples to draw
1000 (default) | positive integer

Number of samples to draw for each document, specified as the comma-separated pair
consisting of 'NumSamples' and a positive integer.
Example: 'NumSamples',500

Output Arguments
logProb — Log-probabilities
numeric vector

Log-probabilities of the documents under the LDA model, returned as a numeric vector.

ppl — Perplexity
positive scalar

Perplexity of the documents calculated from the log-probabilities, returned as a positive
scalar.

1 Functions — Alphabetical List

1-204

Algorithms
The logp uses the iterated pseudo-count method described in

References
[1] Wallach, Hanna M., Iain Murray, Ruslan Salakhutdinov, and David Mimno. "Evaluation

methods for topic models." In Proceedings of the 26th annual international
conference on machine learning, pp. 1105–1112. ACM, 2009. Harvard

See Also
bagOfWords | fitlda | ldaModel | predict | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b

 logp

1-205

lower
Convert documents to lowercase

Syntax
newDocuments = lower(documents)

Description
newDocuments = lower(documents) converts each uppercase character in the input
documents to the corresponding lowercase character, and leaves all other characters
unchanged.

Examples

Convert Documents to Lowercase

Convert all uppercase characters in an array of documents to lowercase.

documents = tokenizedDocument([
 "An Example of a Short Sentence"
 "A Second Short Sentence"])

documents =
 2x1 tokenizedDocument:

 6 tokens: An Example of a Short Sentence
 4 tokens: A Second Short Sentence

newDocuments = lower(documents)

newDocuments =
 2x1 tokenizedDocument:

1 Functions — Alphabetical List

1-206

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs |
tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 lower

1-207

normalizeWords
Stem or lemmatize words

Use normalizeWords to reduce words to a root form. To lemmatize English words, or
reduce them to their dictionary forms, set the 'Style' option to 'lemma'.

Syntax
newDocuments = normalizeWords(documents)
newWords = normalizeWords(words)
___ = normalizeWords(___ ,'Style',style)

Description
newDocuments = normalizeWords(documents) reduces the words in documents to
a root form. For English text, the function, by default, stems the words using the Porter
stemmer. For Japanese text, the function, by default, lemmatizes the words using the
MeCab tokenizer.

newWords = normalizeWords(words) reduces each word in words to a root form.

___ = normalizeWords(___ ,'Style',style) also specifies normalization style.
For example, normalizeWords(documents,'Style','lemma') lemmatizes the words
in the input documents.

Examples

Stem Words in Documents

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
 "a strongly worded collection of words"

1 Functions — Alphabetical List

1-208

 "another collection of words"]);
newDocuments = normalizeWords(documents)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: a strongli word collect of word
 4 tokens: anoth collect of word

Stem Words in String Array

Stem the words in a string array using the Porter stemmer. Each element of the string
array must be a single word.

words = ["a" "strongly" "worded" "collection" "of" "words"];
newWords = normalizeWords(words)

newWords = 1x6 string array
 "a" "strongli" "word" "collect" "of" "word"

Lemmatize Words in Documents

Lemmatize the words in a document array.

documents = tokenizedDocument([
 "I am building a house."
 "The building has two floors."]);
newDocuments = normalizeWords(documents,'Style','lemma')

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: i be build a house .
 6 tokens: the build have two floor .

To improve the lemmatization, first add part-of-speech details to the documents using the
addPartOfSpeechDetails function. For example, if the documents contain part-of-

 normalizeWords

1-209

speech details, then normalizeWords reduces the only verb "building" and not the noun
"building".

documents = addPartOfSpeechDetails(documents);
newDocuments = normalizeWords(documents,'Style','lemma')

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: i be build a house .
 6 tokens: the building have two floor .

Lemmatize Japanese Text

Tokenize Japanese text using the tokenizedDocument function. The function
automatically detects Japanese text.

str = [
 "空に星が輝き、瞬いている。"
 "空の星が輝きを増している。"
 "駅までは遠くて、歩けない。"
 "遠くの駅まで歩けない。"];
documents = tokenizedDocument(str);

Lemmatize the tokens using normalizeWords.

documents = normalizeWords(documents)

documents =
 4x1 tokenizedDocument:

 10 tokens: 空 に 星 が 輝く 、 瞬く て いる 。
 10 tokens: 空 の 星 が 輝き を 増す て いる 。
 9 tokens: 駅 まで は 遠い て 、 歩ける ない 。
 7 tokens: 遠く の 駅 まで 歩ける ない 。

1 Functions — Alphabetical List

1-210

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

style — Normalization style
'stem' | 'lemma'

Normalization style, specified as one of the following:

• 'stem' – Stem words using the Porter stemmer. This option supports English text
only. For English text, this value is the default.

• 'lemma' – Extract the dictionary form of each word. If a word is not in the internal
dictionary, then the function outputs the word unchanged. For English text, the output
is lowercase. For Japanese text, this value is the default.

The function only normalizes tokens with type 'letters' and 'other'. For more
information on token types, see tokenDetails.

Tip For English text, to improve lemmatization of words in documents, first add part-of-
speech details using the addPartOfSpeechDetails function.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

 normalizeWords

1-211

newWords — Output words
string array | character vector | cell array of character vectors

Output words, returned as a string array, character vector, or cell array of character
vectors. words and newWords have the same data type.

Algorithms

Language Details
tokenizedDocument objects contain details about the tokens including language details.
The language details of the input documents determine the behavior of
normalizeWords. The tokenizedDocument function, by default, automatically detects
the language of the input text. To specify the language details manually, use the
'Language' name-value pair argument of tokenizedDocument. To view the token
details, use the tokenDetails function.

Compatibility Considerations

normalizeWords skips complex tokens
Behavior changed in R2018b

Starting in R2018b, for tokenizedDocument input, normalizeWords normalizes tokens
with type 'letters' or 'other' only. This behavior prevents the function from affecting
complex tokens such as URLs and email-addresses.

In previous versions, normalizeWords normalizes all tokens. To reproduce this behavior,
use the command newDocuments = docfun(@(str)
normalizeWords(str),documents).

See Also
addLemmaDetails | addPartOfSpeechDetails | bagOfNgrams | bagOfWords |
removeLongWords | removeShortWords | removeStopWords | removeWords |
stopWords | tokenDetails | tokenizedDocument

1 Functions — Alphabetical List

1-212

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”

Introduced in R2017b

 normalizeWords

1-213

plus+
Append documents

Syntax
newDocuments = documents1 + documents2
newDocuments = plus(documents1,documents2)

Description
newDocuments = documents1 + documents2 appends the documents in
documents2 to the documents in documents1.

newDocuments = plus(documents1,documents2) is equivalent to newDocuments =
documents1 + documents2.

Examples

Append Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create arrays containing the first 5 and second 5 sonnets.

documents1 = documents(1:5)

1 Functions — Alphabetical List

1-214

documents1 =
 5x1 tokenizedDocument:

 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet

documents2 = documents(6:10)

documents2 =
 5x1 tokenizedDocument:

 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Append the second 5 sonnets to the first 5 sonnets.

newDocuments = documents1 + documents2

newDocuments =
 5x1 tokenizedDocument:

 138 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 135 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 135 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 141 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 130 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Input Arguments
documents1 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documents1 and
documents2 must be the same size.

 plus+

1-215

documents2 — Input documents
array of tokenized documents

Input documents, specified as a tokenizedDocument array. documents1 and
documents2 must be the same size.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
addPartOfSpeechDetails | addSentenceDetails | bagOfNgrams | bagOfWords |
docfun | eraseURLs | normalizeWords | replace | tokenDetails |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-216

predict
Predict top LDA topics of documents

Syntax
topicIdx = predict(ldaMdl,documents)
topicIdx = predict(ldaMdl,bag)
topicIdx = predict(ldaMdl,counts)
[topicIdx,score] = predict(___)
___ = predict(___ ,Name,Value)

Description
topicIdx = predict(ldaMdl,documents) returns the LDA topic indices with the
largest probabilities for documents based on the LDA model ldaMdl.

topicIdx = predict(ldaMdl,bag) returns the LDA topic indices with the largest
probabilities for the documents represented by a bag-of-words or bag-of-n-grams model.

topicIdx = predict(ldaMdl,counts) returns the LDA topic indices with the largest
probabilities for the documents represented by a matrix of word counts.

[topicIdx,score] = predict(___) also returns a matrix of posterior probabilities
score.

___ = predict(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Predict Top LDA Topics of Documents

To reproduce the results in this example, set rng to 'default'.

 predict

1-217

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with 20 topics.

numTopics = 20;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0591059 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.01		1.159e+03	5.000	0
1	0.05	5.4884e-02	8.028e+02	5.000	0
2	0.05	4.7400e-03	7.778e+02	5.000	0
3	0.06	3.4597e-03	7.602e+02	5.000	0
4	0.06	3.4662e-03	7.430e+02	5.000	0
5	0.06	2.9259e-03	7.288e+02	5.000	0
6	0.06	6.4180e-05	7.291e+02	5.000	0
===

1 Functions — Alphabetical List

1-218

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [1x20 double]
 DocumentTopicProbabilities: [154x20 double]
 TopicWordProbabilities: [3092x20 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Predict the top topics for an array of new documents.

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
topicIdx = predict(mdl,newDocuments)

topicIdx = 2×1

 19
 8

Visualize the predicted topics using word clouds.

figure
subplot(1,2,1)
wordcloud(mdl,topicIdx(1));
title("Topic " + topicIdx(1))
subplot(1,2,2)
wordcloud(mdl,topicIdx(2));
title("Topic " + topicIdx(2))

 predict

1-219

Predict Top LDA Topics of Word Count Matrix

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

load sonnetsCounts.mat
size(counts)

ans = 1×2

 154 3092

1 Functions — Alphabetical List

1-220

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to
'default'.

rng('default')
numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.105534 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.20		1.159e+03	5.000	0
1	0.06	5.4884e-02	8.028e+02	5.000	0
2	0.05	4.7400e-03	7.778e+02	5.000	0
3	0.05	3.4597e-03	7.602e+02	5.000	0
4	0.05	3.4662e-03	7.430e+02	5.000	0
5	0.06	2.9259e-03	7.288e+02	5.000	0
6	0.05	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [1x20 double]
 DocumentTopicProbabilities: [154x20 double]
 TopicWordProbabilities: [3092x20 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Predict the top topics for the first 5 documents in counts.

topicIdx = predict(mdl,counts(1:5,:))

topicIdx = 5×1

 3
 15
 19

 predict

1-221

 3
 14

Calculate Topic Prediction Scores

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);

Predict the top topics for a new document. Specify the iteration limit to be 200.

newDocument = tokenizedDocument("what's in a name? a rose by any other name would smell as sweet.");
iterationLimit = 200;

1 Functions — Alphabetical List

1-222

[topicIdx,scores] = predict(mdl,newDocument, ...
 'IterationLimit',iterationLimit)

topicIdx = 19

scores = 1×20

 0.0250 0.0250 0.0250 0.0250 0.1250 0.0250 0.0250 0.0250 0.0250 0.0730 0.0250 0.0250 0.0770 0.0250 0.0250 0.0250 0.0250 0.0250 0.2250 0.1250

View the prediction scores in a bar chart.

figure
bar(scores)
title("LDA Topic Prediction Scores")
xlabel("Topic Index")
ylabel("Score")

 predict

1-223

Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a tokenizedDocument, then it must be

1 Functions — Alphabetical List

1-224

a column vector. If documents is a string array or a cell array of character vectors, then
it must be a row of the words of a single document.

Tip To ensure that the function does not discard useful information, you must first
preprocess the input documents using the same steps used to preprocess the documents
used to train the model.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IterationLimit',200 specifies the iteration limit to be 200.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.

 predict

1-225

• 'columns' – Input is a transposed matrix of word counts with columns corresponding
to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

Output Arguments
topicIdx — Predicted topic indices
vector of numeric indices

Predicted topic indices, returned as a vector of numeric indices.

score — Predicted topic probabilities
matrix

Predicted topic probabilities, returned as a D-by-K matrix, where D is the number of input
documents and K is the number of topics in the LDA model. score(i,j) is the
probability that topic j appears in document i. Each row of score sums to one.

1 Functions — Alphabetical List

1-226

See Also
bagOfWords | fitlda | ldaModel | logp | transform | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b

 predict

1-227

readPDFFormData
Read data from PDF forms

Syntax
data = readPDFFormData(filename)
data = readPDFFormData(filename,'Password',password)

Description
data = readPDFFormData(filename) reads the data from a PDF form into a struct.

data = readPDFFormData(filename,'Password',password) specifies the
password for opening the PDF form.

Examples

Read Data from PDF Form

Read the data from the form fields in weatherReportForm1.pdf using
readPDFFormData. The function returns a struct containing the data from the PDF form
fields.

filename = "weatherReportForm1.pdf";
data = readPDFFormData(filename)

data = struct with fields:
 event_type: "Thunderstorm Wind"
 event_narrative: "Large tree down between Plantersville and Nettleton."

Read Data From Multiple Forms

Read the data from the form fields in multiple files using a file datastore.

1 Functions — Alphabetical List

1-228

Create a file datastore for the weather reports forms. The forms are named
"weatherReportFormN.pdf", where N is the number of the form.. Specify the file name
using the wildcard "*" to find all file names of this structure. To specify the read function
to be readPDFFormData, input this function to fileDatastore using a function handle.

fds = fileDatastore("weatherReportForm*.pdf",'ReadFcn',@readPDFFormData)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\15\tpc536b225\textanalytics-ex39762425\weatherReportForm1.pdf';
 ' ...\15\tpc536b225\textanalytics-ex39762425\weatherReportForm2.pdf';
 ' ...\15\tpc536b225\textanalytics-ex39762425\weatherReportForm3.pdf'
 ... and 1 more
 }
 UniformRead: 0
 ReadFcn: @readPDFFormData
 AlternateFileSystemRoots: {}

Loop over the files in the datastore and read each PDF form.

data = [];
while hasdata(fds)
 textData = read(fds);
 data = [data; textData];
end
data

data = 4x1 struct array with fields:
 event_type
 event_narrative

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.

readPDFFormData supports AcroForm PDF files (interactive forms) only.

 readPDFFormData

1-229

Data Types: string | char

password — Password to open PDF file
string scalar | character vector

Password to open PDF file, specified as a character vector or a string scalar.
Example: 'skroWhtaM'
Data Types: string | char

Output Arguments
data — Output struct
struct

Output struct. The fields of data correspond to the names of the form fields in the PDF. If
the form field names are not valid struct field names, then the function automatically edits
them to construct valid names.

See Also
extractFileText | extractHTMLText | readPDFFormData | tokenizedDocument |
writeTextDocument

Topics
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018a

1 Functions — Alphabetical List

1-230

readWordEmbedding
Read word embedding from file

Syntax
emb = readWordEmbedding(filename)

Description
emb = readWordEmbedding(filename) reads the pretrained word embedding stored
in text file or zip file filename. The input file must be a text file with UTF-8 encoding in
either the word2vec or GloVe text embedding format, or a zip file containing a text file of
this format.

Examples

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

king = word2vec(emb,"king");
man = word2vec(emb,"man");

 readWordEmbedding

1-231

woman = word2vec(emb,"woman");
word = vec2word(emb,king - man + woman)

word =
"queen"

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

Output Arguments
emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

See Also
doc2sequence | fastTextWordEmbedding | tokenizedDocument |
trainWordEmbedding | vec2word | word2vec | wordEmbedding |
wordEmbeddingLayer | wordEncoding | writeWordEmbedding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-232

regexprep
Replace text in words of documents using regular expression

Text Analytics Toolbox provides functions for common text preprocessing steps. For
example, to remove punctuation and symbol characters, use erasePunctuation or to
remove stem words using the Porter stemmer, use normalizeWords. For more
information, see “Text Data Preparation”.

Syntax
newDocuments = regexprep(documents,expression,replace)

Description
newDocuments = regexprep(documents,expression,replace) replaces all
occurrences of the regular expression expression in the words of documents with the
text in replace.

The function matches each word independently. The match does not have to span the
whole word.

Examples

Update Text in Words

Replace words that begin with "s", end "e", and have at least one character between
them. To match whole words, use "^" to match the start of a word and "$" to match the
end of the word.

documents = tokenizedDocument([...
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

 regexprep

1-233

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

expression = "^s(\w+)e$";
replace = "thing";
newDocuments = regexprep(documents,expression,replace)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: an example of a short thing
 4 tokens: a second short thing

If you do not use "^" and "$", then you can match substrings of the words. Replace all
vowels with "_".

expression = "[aeiou]";
replace = "_";
newDocuments = regexprep(documents,expression,replace)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: _n _x_mpl_ _f _ sh_rt s_nt_nc_
 4 tokens: _ s_c_nd sh_rt s_nt_nc_

Include Captured Tokens in Word Replacement

Replace variations of the word "walk" by capturing the letters that follow "walk".

documents = tokenizedDocument([
 "I walk"
 "they walked"
 "we are walking"])

documents =
 3x1 tokenizedDocument:

 2 tokens: I walk

1 Functions — Alphabetical List

1-234

 2 tokens: they walked
 3 tokens: we are walking

expression = "walk(\w*)";
replace = "ascend$1";
newDocuments = regexprep(documents,expression,replace)

newDocuments =
 3x1 tokenizedDocument:

 2 tokens: I ascend
 2 tokens: they ascended
 3 tokens: we are ascending

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

expression — Regular expression
character vector | cell array of character vectors | string array

Regular expression, specified as a character vector, a cell array of character vectors, or a
string array. Each expression can contain characters, metacharacters, operators, tokens,
and flags that specify patterns to match in str.

The following tables describe the elements of regular expressions.

Metacharacters

Metacharacters represent letters, letter ranges, digits, and space characters. Use them to
construct a generalized pattern of characters.

 regexprep

1-235

Metacharacter Description Example
. Any single character, including white

space
'..ain' matches sequences of five
consecutive characters that end with
'ain'.

[c1c2c3] Any character contained within the
square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[rp.]ain' matches 'rain' or 'pain'
or '.ain'.

[^c1c2c3] Any character not contained within
the square brackets. The following
characters are treated literally: $
| . * + ? and - when not used to
indicate a range.

'[^*rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain' and '*ain'. For
example, it matches 'gain', 'lain', or
'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character in
the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For English
character sets, \w is equivalent to
[a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not alphabetic,
numeric, or underscore. For English
character sets, \W is equivalent to
[^a-zA-Z_0-9]

'\W*' identifies a term that is not a
word.

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end with
the letter n, followed by a white-space
character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S' matches a numeric digit followed
by any non-white-space character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character; equivalent to
[^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space character,
defined by octal 40.

1 Functions — Alphabetical List

1-236

Metacharacter Description Example
\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character,

defined by hex 2C.

Character Representation

Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Quantifiers

Quantifiers specify the number of times a pattern must occur in the matching text.

Quantifier Matches the expression when it
occurs...

Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.
expr? 0 times or 1 time. '\w*(\.m)?' matches words that

optionally end with the extension .m.
expr+ 1 or more times consecutively. '' matches an

 HTML tag when the file name
contains one or more characters.

expr{m,n} At least m times, but no more than n
times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

 regexprep

1-237

Quantifier Matches the expression when it
occurs...

Example

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to * and
+, respectively.

'' matches
an <a> HTML tag when the file name
contains one or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}' matches four consecutive digits.

Quantifiers can appear in three modes, described in the following table. q represents any
of the quantifiers in the previous table.

Mode Description Example
exprq Greedy expression: match as many

characters as possible.
Given the text
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few
characters as necessary.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*?>' ends each
match at the first occurrence of the
closing angle bracket (>):

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as much as
possible, but do not rescan any portions
of the text.

Given the
text'<tr><td><p>text</p></td>',
the expression '</?t.*+>' does not
return any matches, because the closing
angle bracket is captured using .*, and
is not rescanned.

Grouping Operators

Grouping operators allow you to capture tokens, apply one operator to multiple elements,
or disable backtracking in a specific group.

1 Functions — Alphabetical List

1-238

Grouping
Operator

Description Example

(expr) Group elements of the expression and
capture tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches
two consecutive patterns of a vowel
followed by a nonvowel, such as 'anon'.

Without grouping, '[aeiou][^aeiou]
{2}'matches a vowel followed by two
nonvowels.

(?>expr) Group atomically. Do not backtrack
within the group to complete the match,
and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the
atomic group, Z is captured using .* and
is not rescanned.

(expr1|
expr2)

Match expression expr1 or expression
expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress tokens
or group atomically.

'(let|tel)\w+' matches words that
start with let or tel.

Anchors

Anchors in the expression match the beginning or end of the input text or word.

Anchor Matches the... Example
^expr Beginning of the input text. '^M\w*' matches a word starting with M

at the beginning of the text.
expr$ End of the input text. '\w*m$' matches words ending with m

at the end of the text.
\<expr Beginning of a word. '\<n\w*' matches any words starting

with n.

 regexprep

1-239

Anchor Matches the... Example
expr\> End of a word. '\w*e\>' matches any words ending

with e.

Lookaround Assertions

Lookaround assertions look for patterns that immediately precede or follow the intended
match, but are not part of the match.

The pointer remains at the current location, and characters that correspond to the test
expression are not captured or discarded. Therefore, lookahead assertions can match
overlapping character groups.

Lookaround
Assertion

Description Example

expr(?=test) Look ahead for characters that match
test.

'\w*(?=ing)' matches terms that are
followed by ing, such as 'Fly' and
'fall' in the input text 'Flying,
not falling.'

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that match
test.

'(?<=re)\w*' matches terms that
follow 're', such as 'new', 'use', and
'cycle' in the input text 'renew,
reuse, recycle'

(?<!test)expr Look behind for characters that do not
match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do not
precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation is equivalent to a
logical AND.

Operation Description Example
(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches

consonants.
(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches

consonants.

1 Functions — Alphabetical List

1-240

Logical and Conditional Operators

Logical and conditional operators allow you to test the state of a given condition, and then
use the outcome to determine which pattern, if any, to match next. These operators
support logical OR, and if or if/else conditions.

Conditions can be tokens, lookaround operators, or dynamic expressions of the form (?
@cmd). Dynamic expressions must return a logical or numeric value.

Conditional Operator Description Example
expr1|expr2 Match expression expr1 or

expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+' matches words
that start with let or tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)'
matches a drive name, such as C:\,
when run on a Windows® system.

(?(cond)expr1|
expr2)

If condition cond is true, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Token Operators

Tokens are portions of the matched text that you define by enclosing part of the regular
expression in parentheses. You can refer to a token by its sequence in the text (an ordinal
token), or assign names to tokens for easier code maintenance and readable output.

Ordinal Token Operator Description Example
(expr) Capture in a token the characters

that match the enclosed
expression.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John or
Jon.

 regexprep

1-241

Ordinal Token Operator Description Example
\N Match the Nth token. '<(\w+).*>.*</\1>' captures

tokens for HTML tags, such as
'title' from the text
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches text that includes
her when the text begins with Mrs,
or that includes his when the text
begins with Mr.

Named Token Operator Description Example
(?<name>expr) Capture in a named token the

characters that match the enclosed
expression.

'(?<month>\d+)-(?<day>\d+)-
(?<yr>\d+)' creates named
tokens for the month, day, and year
in an input date of the form mm-dd-
yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</
\k<tag>>' captures tokens for
HTML tags, such as 'title' from
the text '<title>Some text</
title>'.

(?(name)expr1|
expr2)

If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?
(sex)her|his) \w*' matches
text that includes her when the text
begins with Mrs, or that includes
his when the text begins with Mr.

Note If an expression has nested parentheses, MATLAB® captures tokens that
correspond to the outermost set of parentheses. For example, given the search pattern
'(and(y|rew))', MATLAB creates a token for 'andrew' but not for 'y' or 'rew'.

Dynamic Regular Expressions

Dynamic expressions allow you to execute a MATLAB command or a regular expression to
determine the text to match.

1 Functions — Alphabetical List

1-242

The parentheses that enclose dynamic expressions do not create a capturing group.

Operator Description Example
(??expr) Parse expr and include the resulting

term in the match expression.

When parsed, expr must correspond
to a complete, valid regular
expression. Dynamic expressions that
use the backslash escape character (\)
require two backslashes: one for the
initial parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters to
match by reading a digit at the
beginning of the match. The dynamic
expression is enclosed in a second set
of parentheses so that the resulting
match is captured in a token. For
instance, matching '5XXXXX'
captures tokens for '5' and
'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include the
output returned by the command in
the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at least
four characters long, such as 'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard any
output the command returns. (Helpful
for diagnosing regular expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include double
letters (such as pp), and displays
intermediate results.

Within dynamic expressions, use the following operators to define replacement text.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

Comments

 regexprep

1-243

Characters Description Example
(?#comment) Insert a comment in the regular

expression. The comment text is
ignored when matching the input.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags

Search flags modify the behavior for matching expressions. An alternative to using a
search flag within an expression is to pass an option input argument.

Flag Description
(?-i) Match letter case (default for regexp and regexprep).
(?i) Do not match letter case (default for regexpi).
(?s) Match dot (.) in the pattern with any character (default).
(?-s) Match dot in the pattern with any character that is not a newline character.
(?-m) Match the ^ and $ metacharacters at the beginning and end of text

(default).
(?m) Match the ^ and $ metacharacters at the beginning and end of a line.
(?-x) Include space characters and comments when matching (default).
(?x) Ignore space characters and comments when matching. Use '\ ' and

'\#' to match space and # characters.

The expression that the flag modifies can appear either after the parentheses, such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger expression.
Data Types: char | cell | string

replace — Replacement text
character vector | cell array of character vectors | string array

Replacement text, specified as a character vector, a cell array of character vectors, or a
string array, as follows:

1 Functions — Alphabetical List

1-244

• If replace is a single character vector and expression is a cell array of character
vectors, then regexprep uses the same replacement text for each expression.

• If replace is a cell array of N character vectors and expression is a single character
vector, then regexprep attempts N matches and replacements.

• If both replace and expression are cell arrays of character vectors, then they must
contain the same number of elements. regexprep pairs each replace element with
its corresponding element in expression.

The replacement text can include regular characters, special characters (such as tabs or
new lines), or replacement operators, as shown in the following tables.

Replacement Operator Description
$& or $0 Portion of the input text that is currently a match
$` Portion of the input text that precedes the current match
$' Portion of the input text that follows the current match (use $'' to

represent $')
$N Nth token
$<name> Named token
${cmd} Output returned when MATLAB executes the command, cmd

Operator Description
\a Alarm (beep)
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char Any character with special meaning in regular expressions that you want to match

literally (for example, use \\ to match a single backslash)

Data Types: char | cell | string

 regexprep

1-245

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Tips
• Text Analytics Toolbox provides functions for common text preprocessing steps. For

example, to remove punctuation and symbol characters, use erasePunctuation or
to remove stem words using the Porter stemmer, use normalizeWords. For more
information, see “Text Data Preparation”.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs |
normalizeWords | removeLongWords | removeShortWords | removeWords |
replace | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-246

removeDocument
Remove documents from bag-of-words or bag-of-n-grams model

Syntax
newBag = removeDocument(bag,idx)

Description
newBag = removeDocument(bag,idx) removes the documents with indices specified
by idx from the bag-of-words or bag-of-n-grams model bag. If the removed documents
contain words or n-grams that do not appear in the remaining documents, then the
function also removes these words or n-grams from bag.

Examples

Remove Documents from Bag-of-Words Model

Remove selected documents from a bag-of-words model.

documents = tokenizedDocument([...
 "an example of a short sentence"
 "a second short sentence"
 "a third example"
 "a final sentence"]);
bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [4x9 double]
 Vocabulary: [1x9 string]
 NumWords: 9
 NumDocuments: 4

 removeDocument

1-247

Remove the first and third documents from bag.

idx = [1 3];
newBag = removeDocument(bag,idx)

newBag =
 bagOfWords with properties:

 Counts: [2x5 double]
 Vocabulary: ["a" "short" "sentence" "second" "final"]
 NumWords: 5
 NumDocuments: 2

Remove the same documents using logical indices.

idx = logical([1 0 1 0]);
newBag = removeDocument(bag,idx)

newBag =
 bagOfWords with properties:

 Counts: [2x5 double]
 Vocabulary: ["a" "short" "sentence" "second" "final"]
 NumWords: 5
 NumDocuments: 2

Input Arguments
bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object.

idx — Indices of documents to remove
vector of numeric indices | vector of logical indices

Indices of documents to remove, specified as a vector of numeric indices or a vector of
logical indices.
Example: [2 4 6]

1 Functions — Alphabetical List

1-248

Example: [0 1 0 1 0 1]

Output Arguments
newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bagOfWords object or a bagOfNgrams object. The type of
newBag is the same as the type of bag.

See Also
addDocument | bagOfNgrams | bagOfWords | removeEmptyDocuments |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

 removeDocument

1-249

removeEmptyDocuments
Remove empty documents from tokenized document array, bag-of-words model, or bag-of-
n-grams model

Syntax
newDocuments = removeEmptyDocuments(documents)
newBag = removeEmptyDocuments(bag)
[___ ,idx] = removeEmptyDocuments(___)

Description
newDocuments = removeEmptyDocuments(documents) removes documents which
have no words from documents.

newBag = removeEmptyDocuments(bag) removes documents which have no words or
n-grams from the bag-of-words or bag-of-n-grams model bag.

[___ ,idx] = removeEmptyDocuments(___) also returns the indices of the removed
documents.

Examples

Remove Empty Documents from Array

Remove documents containing no words from an array of tokenized documents.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 ""
 "a second short sentence"
 ""])

1 Functions — Alphabetical List

1-250

documents =
 4x1 tokenizedDocument:

 6 tokens: an example of a short sentence
 0 tokens:
 4 tokens: a second short sentence
 0 tokens:

Remove the empty documents.

newDocuments = removeEmptyDocuments(documents)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

Remove Empty Documents from Bag-of-Words Model

Remove documents containing no words from bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 ""
 "a second short sentence"
 ""]);
bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [4x7 double]
 Vocabulary: [1x7 string]
 NumWords: 7
 NumDocuments: 4

Remove the empty documents from the bag-of-words model.

 removeEmptyDocuments

1-251

newBag = removeEmptyDocuments(bag)

newBag =
 bagOfWords with properties:

 Counts: [2x7 double]
 Vocabulary: [1x7 string]
 NumWords: 7
 NumDocuments: 2

Remove Documents and Corresponding Labels

Remove documents containing no words from an array and use the indices of removed
documents to remove the corresponding labels also.

Create an array of tokenized documents which includes empty documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 ""
 "a second short sentence"
 ""])

documents =
 4x1 tokenizedDocument:

 6 tokens: an example of a short sentence
 0 tokens:
 4 tokens: a second short sentence
 0 tokens:

Create a vector of labels.

labels = ["T"; "F"; "F"; "T"]

labels = 4x1 string array
 "T"
 "F"
 "F"
 "T"

1 Functions — Alphabetical List

1-252

Remove the empty documents and get the indices of the removed documents.

[newDocuments, idx] = removeEmptyDocuments(documents)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

idx = 2×1

 2
 4

Remove the corresponding labels from labels.

labels(idx) = []

labels = 2x1 string array
 "T"
 "F"

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object.

 removeEmptyDocuments

1-253

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output model
bagOfWords object | bagOfNgrams object

Output model, returned as a bagOfWords object or a bagOfNgrams object. The type of
newBag is the same as the type of bag.

idx — Indices of removed documents
vector of positive integers

Indices of removed documents, returned as a vector of positive integers.

See Also
addDocument | bagOfNgrams | bagOfWords | removeDocument |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

1 Functions — Alphabetical List

1-254

removeInfrequentNgrams
Remove infrequently seen n-grams from bag-of-n-grams model

Syntax
newBag = removeInfrequentNgrams(bag,count)
newBag = removeInfrequentNgrams(bag,count,'NgramLengths',lengths)

Description
newBag = removeInfrequentNgrams(bag,count) removes the n-grams that appear
at most count times in total from the bag-of-n-grams model bag.

newBag = removeInfrequentNgrams(bag,count,'NgramLengths',lengths) only
removes n-grams with lengths specified by lengths.

Examples

Remove Infrequent N-Grams from Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-n-grams model. Specify to count bigrams (pairs of words) and trigrams
(triples of words).

bag = bagOfNgrams(documents,'NgramLengths',[2 3])

 removeInfrequentNgrams

1-255

bag =
 bagOfNgrams with properties:

 Counts: [154x18022 double]
 Vocabulary: [1x3092 string]
 Ngrams: [18022x3 string]
 NgramLengths: [2 3]
 NumNgrams: 18022
 NumDocuments: 154

Remove n-grams of any length that appear two or fewer times in total.

bag = removeInfrequentNgrams(bag,2)

bag =
 bagOfNgrams with properties:

 Counts: [154x103 double]
 Vocabulary: [1x73 string]
 Ngrams: [103x3 string]
 NgramLengths: [2 3]
 NumNgrams: 103
 NumDocuments: 154

Remove bigrams that appear four or fewer times in total.

bag = removeInfrequentNgrams(bag,4,'NgramLengths',2)

bag =
 bagOfNgrams with properties:

 Counts: [154x41 double]
 Vocabulary: [1x30 string]
 Ngrams: [41x3 string]
 NgramLengths: [2 3]
 NumNgrams: 41
 NumDocuments: 154

1 Functions — Alphabetical List

1-256

Input Arguments
bag — Input bag-of-n-grams model
bagOfNgrams object

Input bag-of-n-grams model, specified as a bagOfNgrams object.

count — Count threshold
positive integer

Count threshold, specified as a positive integer. The function removes the n-grams that
appear count times in total or fewer.

lengths — N-gram lengths
positive integer | vector of positive integers

N-gram lengths, specified as a positive integer or a vector of positive integers.

If you specify lengths, the function removes infrequent n-grams of the specified lengths
only. If you do not specify lengths, then the function removes infrequent n-grams
regardless of length.
Example: [1 2 3]

Output Arguments
newBag — Output bag-of-n-grams model
bagOfNgrams object

Output bag-of-n-grams model, returned as a bagOfNgrams object.

See Also
bagOfNgrams | bagOfWords | removeEmptyDocuments | removeInfrequentWords |
removeNgrams | tfidf | tokenizedDocument | topkngrams

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

 removeInfrequentNgrams

1-257

“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a

1 Functions — Alphabetical List

1-258

removeInfrequentWords
Remove words with low counts from bag-of-words model

Syntax
newBag = removeInfrequentWords(bag,count)

Description
newBag = removeInfrequentWords(bag,count) removes the words that appear at
most count times in total from the bag-of-words model bag.

Examples

Remove Infrequent Words

Remove the words that appear two times or fewer from a bag-of-words model.

Create a bag-of-words model from an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"
 "another example"
 "a short example"]);
bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [4x8 double]
 Vocabulary: [1x8 string]
 NumWords: 8
 NumDocuments: 4

 removeInfrequentWords

1-259

Remove the words that appear two times or fewer from the bag-of-words model.

count = 2;
newBag = removeInfrequentWords(bag,count)

newBag =
 bagOfWords with properties:

 Counts: [4x3 double]
 Vocabulary: ["example" "a" "short"]
 NumWords: 3
 NumDocuments: 4

Input Arguments
bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

count — Count threshold to remove words
positive integer

Count threshold to remove words, specified as a positive integer. The function removes
the words that appear count times in total or fewer.

See Also
bagOfNgrams | bagOfWords | removeEmptyDocuments | removeInfrequentNgrams |
removeWords | tfidf | tokenizedDocument | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”

1 Functions — Alphabetical List

1-260

Introduced in R2017b

 removeInfrequentWords

1-261

removeLongWords
Remove long words from documents or bag-of-words model

Syntax
newDocuments = removeLongWords(documents,len)
newBag = removeLongWords(bag,len)

Description
newDocuments = removeLongWords(documents,len) removes words of length len
or greater from documents.

newBag = removeLongWords(bag,len) removes words of length len or greater from
the bagOfWords object bag.

Examples

Remove Long Words from Document

Remove the words with seven or greater characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removeLongWords(document,7)

newDocument =
 tokenizedDocument:

 4 tokens: An of a short

1 Functions — Alphabetical List

1-262

Remove Long Words from Bag-of-Words Model

Remove the words with seven or greater characters from a bag-of-words model.

documents = tokenizedDocument([...
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeLongWords(bag,7)

newBag =
 bagOfWords with properties:

 Counts: [2x5 double]
 Vocabulary: ["an" "of" "a" "short" "second"]
 NumWords: 5
 NumDocuments: 2

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

len — Minimum length of words to remove
positive integer

Minimum length of words to remove, specified as a positive integer. The function removes
words with len or greater characters.

 removeLongWords

1-263

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfNgrams | bagOfWords | normalizeWords | removeShortWords |
removeStopWords | removeWords | stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-264

removeNgrams
Remove n-grams from bag-of-n-grams model

Syntax
newBag = removeNgrams(bag,ngrams)
newBag = removeNgrams(bag,idx)

Description
newBag = removeNgrams(bag,ngrams) removes the specified n-grams from the bag-
of-n-grams model bag.

newBag = removeNgrams(bag,idx) specifies n-grams by numeric or logical indices in
bag.Ngrams. This syntax is the same as newBag =
removeNgrams(bag,bag.Ngrams(idx,:)).

Examples

Remove N-Grams from Bag-of-N-Grams Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create bag-of-n-grams model.

bag = bagOfNgrams(documents)

 removeNgrams

1-265

bag =
 bagOfNgrams with properties:

 Counts: [154×8799 double]
 Vocabulary: [1×3092 string]
 Ngrams: [8799×2 string]
 NgramLengths: 2
 NumNgrams: 8799
 NumDocuments: 154

View the top five n-grams.

topkngrams(bag,5)

ans=5×3 table
 Ngram Count NgramLength
 ________________ _____ ___________

 "thou" "art" 34 2
 "mine" "eye" 15 2
 "thy" "self" 14 2
 "thou" "dost" 13 2
 "mine" "own" 13 2

Remove the n-grams ["thou" "art"] and ["thou" "dost"] from the model. View the
new top 5 n-grams.

ngrams = [...
 "thou" "art"
 "thou" "dost"];
bag = removeNgrams(bag,ngrams);
topkngrams(bag,5)

ans=5×3 table
 Ngram Count NgramLength
 _________________ _____ ___________

 "mine" "eye" 15 2
 "thy" "self" 14 2
 "mine" "own" 13 2
 "thy" "sweet" 12 2
 "thy" "love" 11 2

1 Functions — Alphabetical List

1-266

Remove N-Grams from Bag-of-N-Grams Model by Index

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create bag-of-n-grams model.

bag = bagOfNgrams(documents)

bag =
 bagOfNgrams with properties:

 Counts: [154x8799 double]
 Vocabulary: [1x3092 string]
 Ngrams: [8799x2 string]
 NgramLengths: 2
 NumNgrams: 8799
 NumDocuments: 154

View the first ten n-grams in the model.

bag.Ngrams(1:10,:)

ans = 10x2 string array
 "fairest" "creatures"
 "creatures" "desire"
 "desire" "increase"
 "increase" "thereby"
 "thereby" "beautys"
 "beautys" "rose"
 "rose" "might"
 "might" "never"
 "never" "die"
 "die" "riper"

 removeNgrams

1-267

Remove the 9th and 10th n-grams from the model. View the new list of the first ten n-
grams.

idx = [9 10];
bag = removeNgrams(bag,idx);
bag.Ngrams(1:10,:)

ans = 10x2 string array
 "fairest" "creatures"
 "creatures" "desire"
 "desire" "increase"
 "increase" "thereby"
 "thereby" "beautys"
 "beautys" "rose"
 "rose" "might"
 "might" "never"
 "riper" "time"
 "time" "decease"

Input Arguments
bag — Input bag-of-n-grams model
bagOfNgrams object

Input bag-of-n-grams model, specified as a bagOfNgrams object.

ngrams — N-grams to remove
string array | character vector | cell array of character vectors

N-grams to remove, specified as a string array, character vector, or a cell array of
character vectors.

If ngrams is a string array or cell array, then it has size NumNgrams-by-maxN , where
NumNgrams is the number of n-grams, and maxN is the length of the largest n-gram. If
ngrams is a character vector, then it represents a single word (unigram).

The value of ngrams(i,j) is the jth word of the ith n-gram. If the number of words in
the ith n-gram is less than maxN, then the remaining entries of the ith row of ngrams are
empty.
Example: ["An" ""; "An example"; "example" ""]

1 Functions — Alphabetical List

1-268

Data Types: string | char | cell

idx — Indices of n-grams to remove
vector of numeric indices | vector of logical indices

Indices of n-grams to remove, specified as a vector of numeric indices or a vector of
logical indices. The indices in idx correspond to the rows of the bag.Ngrams.
Example: [1 5 10]

See Also
bagOfNgrams | bagOfWords | removeEmptyDocuments | removeInfrequentNgrams |
removeWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a

 removeNgrams

1-269

removeShortWords
Remove short words from documents or bag-of-words model

Syntax
newDocuments = removeShortWords(documents,len)
newBag = removeShortWords(bag,len)

Description
newDocuments = removeShortWords(documents,len) removes words of length len
or less from documents.

newBag = removeShortWords(bag,len) removes words of length len or less from
the bagOfWords object bag.

Examples

Remove Short Words from Document

Remove the words with two or fewer characters from a document.

document = tokenizedDocument("An example of a short sentence");
newDocument = removeShortWords(document,2)

newDocument =
 tokenizedDocument:

 3 tokens: example short sentence

1 Functions — Alphabetical List

1-270

Remove Short Words from Bag-of-Words Model

Remove the words with two or fewer characters from a bag-of-words model.

documents = tokenizedDocument([...
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeShortWords(bag,2)

newBag =
 bagOfWords with properties:

 Counts: [2x4 double]
 Vocabulary: ["example" "short" "sentence" "second"]
 NumWords: 4
 NumDocuments: 2

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

len — Maximum length of words to remove
positive integer

Maximum length of words to remove, specified as a positive integer. The function removes
words with len or fewer characters.

 removeShortWords

1-271

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfNgrams | bagOfWords | normalizeWords | removeLongWords | removeWords |
stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-272

removeStopWords
Remove stop words from documents

Words like "a", "and", "to", and "the" (known as stop words) can add noise to data. Use
this function to remove stop words before analysis.

Syntax
newDocuments = removeStopWords(documents)

Description
newDocuments = removeStopWords(documents) removes the stop words from the
tokenizedDocument array documents.

The language of the removed stop words depend on the language details of the tokens.
For more information, see “Language Details” on page 1-275.

Examples

Remove Stop Words from Documents

Remove the stop words from an array of documents using removeStopWords. The
tokenizedDocument function detects that the documents are in English, so
removeStopWords removes English stop words.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
newDocuments = removeStopWords(documents)

newDocuments =
 2x1 tokenizedDocument:

 removeStopWords

1-273

 3 tokens: example short sentence
 3 tokens: second short sentence

Remove Japanese Stop Words

Tokenize Japanese text using tokenizedDocument. The function automatically detects
Japanese text.

str = [
 "ここは静かなので、とても穏やかです"
 "企業内の顧客データを利用し、今年の売り上げを調べることが出来た。"
 "私は先生です。私は英語を教えています。"];
documents = tokenizedDocument(str);

Remove stop words using removeStopWords. The function uses the language details
from documents to determine which language stop words to remove.

documents = removeStopWords(documents)

documents =
 3x1 tokenizedDocument:

 4 tokens: 静か 、 とても 穏やか
 10 tokens: 企業 顧客 データ 利用 、 今年 売り上げ 調べる 出来 。
 5 tokens: 先生 。 英語 教え 。

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

1 Functions — Alphabetical List

1-274

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

Algorithms

Language Details
tokenizedDocument objects contain details about the tokens including language details.
The language details of the input documents determine the behavior of
removeStopWords. The tokenizedDocument function, by default, automatically detects
the language of the input text. To specify the language details manually, use the
'Language' name-value pair argument of tokenizedDocument. To view the token
details, use the tokenDetails function.

See Also
bagOfWords | normalizeWords | removeLongWords | removeShortWords |
removeWords | stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”
“Japanese Language Support”

Introduced in R2018b

 removeStopWords

1-275

removeWords
Remove selected words from documents or bag-of-words model

Syntax
newDocuments = removeWords(documents,words)
newDocuments = removeWords(documents,idx)

newBag = removeWords(bag,words)
newBag = removeWords(bag,idx)

Description
newDocuments = removeWords(documents,words) removes the specified words
from documents.

newDocuments = removeWords(documents,idx) removes words by specifying the
numeric or logical indices idx of the words in documents.Vocabulary. This syntax is
the same as newDocuments =
removeWords(documents,documents.Vocabulary(idx)).

newBag = removeWords(bag,words) removes the specified words from the bag-of-
words model bag.

newBag = removeWords(bag,idx) removes words by specifying the numeric or logical
indices idx of the words in bag.Vocabulary. This syntax is the same as newBag =
removeWords(bag,bag.Vocabulary(idx)).

Examples

Remove Words from Documents

Remove words from an array of documents by inputting a string array of words to
removeWords.

1 Functions — Alphabetical List

1-276

Create an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);

Remove the words "short" and "second".

words = ["short" "second"];
newDocuments = removeWords(documents,words)

newDocuments =
 2x1 tokenizedDocument:

 5 tokens: an example of a sentence
 2 tokens: a sentence

Remove Words from Documents by Index

Remove words from documents by inputting a vector of numeric indices to removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
 "I love MATLAB"
 "I love MathWorks"])

documents =
 2x1 tokenizedDocument:

 3 tokens: I love MATLAB
 3 tokens: I love MathWorks

View the vocabulary of documents.

documents.Vocabulary

ans = 1x4 string array
 "I" "love" "MATLAB" "MathWorks"

 removeWords

1-277

Remove the first and third words of the vocabulary from the documents by specifying the
numeric indices [1 3].

idx = [1 3];
newDocuments = removeWords(documents,idx)

newDocuments =
 2x1 tokenizedDocument:

 1 tokens: love
 2 tokens: love MathWorks

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newDocuments = removeWords(documents,idx)

newDocuments =
 2x1 tokenizedDocument:

 1 tokens: love
 2 tokens: love MathWorks

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeWords(bag,stopWords)

newBag =
 bagOfWords with properties:

 Counts: [2x4 double]
 Vocabulary: ["example" "short" "sentence" "second"]

1 Functions — Alphabetical List

1-278

 NumWords: 4
 NumDocuments: 2

Remove Words from Bag-of-Words Model by Index

Remove words from a bag-of-words model by inputting a vector of numeric indices to
removeWords.

Create an array of tokenized documents.

documents = tokenizedDocument([
 "I love MATLAB"
 "I love MathWorks"]);
bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [2x4 double]
 Vocabulary: ["I" "love" "MATLAB" "MathWorks"]
 NumWords: 4
 NumDocuments: 2

View the vocabulary of bag.

bag.Vocabulary

ans = 1x4 string array
 "I" "love" "MATLAB" "MathWorks"

Remove the first and third words of the vocabulary from the bag-of-words model by
specifying the numeric indices [1 3].

idx = [1 3];
newBag = removeWords(bag,idx)

newBag =
 bagOfWords with properties:

 removeWords

1-279

 Counts: [2x2 double]
 Vocabulary: ["love" "MathWorks"]
 NumWords: 2
 NumDocuments: 2

Alternatively, you can specify logical indices.

idx = logical([1 0 1 0]);
newBag = removeWords(bag,idx)

newBag =
 bagOfWords with properties:

 Counts: [2x2 double]
 Vocabulary: ["love" "MathWorks"]
 NumWords: 2
 NumDocuments: 2

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

bag — Input bag-of-words model
bagOfWords object

Input bag-of-words model, specified as a bagOfWords object.

words — Words to remove
string vector | character vector | cell array of character vectors

Words to remove, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats it as a single
word.
Data Types: string | char | cell

1 Functions — Alphabetical List

1-280

idx — Indices of words in vocabulary to remove
vector of numeric indices | vector of logical indices

Indices of words to remove, specified as a vector of numeric indices or a vector of logical
indices. The indices in idx correspond to the locations of the words in the Vocabulary
property of the input documents or bag-of-words model.
Example: [1 5 10]

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

newBag — Output bag-of-words model
bagOfWords object

Output bag-of-words model, returned as a bagOfWords object.

See Also
bagOfNgrams | bagOfWords | normalizeWords | removeEmptyDocuments |
removeInfrequentWords | removeLongWords | removeNgrams | removeShortWords
| stopWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

 removeWords

1-281

replace
Find and replace substrings in documents

Syntax
newDocuments = replace(documents,old,new)

Description
newDocuments = replace(documents,old,new) replaces all occurrences of old in
documents with new.

Examples

Replace Substrings in Documents

Replace words in a document array.

documents = tokenizedDocument([
 "an extreme example"
 "another extreme example"])

documents =
 2x1 tokenizedDocument:

 3 tokens: an extreme example
 3 tokens: another extreme example

newDocuments = replace(documents,"example","sentence")

newDocuments =
 2x1 tokenizedDocument:

 3 tokens: an extreme sentence

1 Functions — Alphabetical List

1-282

 3 tokens: another extreme sentence

Replace substrings of the words.

newDocuments = replace(documents,"ex","X-")

newDocuments =
 2x1 tokenizedDocument:

 3 tokens: an X-treme X-ample
 3 tokens: another X-treme X-ample

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

old — Substring to replace
string array | character vector | cell array of character vectors

Substring to replace, specified as a string array, character vector, or cell array of
character vectors.
Data Types: string | char | cell

new — New substring
string array | character vector | cell array of character vectors

New substring, specified as a string array, character vector, or cell array of character
vectors.
Data Types: string | char | cell

Output Arguments
newDocuments — Output documents
tokenizedDocument array

 replace

1-283

Output documents, returned as a tokenizedDocument array.

See Also
bagOfWords | decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs
| normalizeWords | regexprep | removeLongWords | removeShortWords |
removeWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-284

resume
Resume fitting LDA model

Syntax
updatedMdl = resume(ldaMdl,bag)
updatedMdl = resume(ldaMdl,counts)
updatedMdl = resume(___ ,Name,Value)

Description
updatedMdl = resume(ldaMdl,bag) returns an updated LDA model by training for
more iterations on the bag-of-words or bag-of-n-grams model bag. The input bag must be
the same model used to fit ldaMdl.

updatedMdl = resume(ldaMdl,counts) returns an updated LDA model by training
for more iterations on the documents represented by the matrix of word counts counts.
The input counts must be the same matrix used to fit ldaMdl.

updatedMdl = resume(___ ,Name,Value) specifies additional options using one or
more name-value pair arguments.

Examples

Resume Fitting of LDA Model

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

 resume

1-285

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with four topics. The resume function does not support the default
solver for fitlda. Set the LDA solver to be collapsed variational Bayes, zeroth order.

numTopics = 4;
mdl = fitlda(bag,numTopics,'Solver','cvb0')

===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.00		3.292e+03	1.000	0
1	0.01	1.4970e-01	1.147e+03	1.000	0
2	0.01	7.1229e-03	1.091e+03	1.000	0
3	0.01	8.1261e-03	1.031e+03	1.000	0
4	0.01	8.8626e-03	9.703e+02	1.000	0
5	0.01	8.5486e-03	9.154e+02	1.000	0
6	0.01	7.4632e-03	8.703e+02	1.000	0
7	0.01	6.0480e-03	8.356e+02	1.000	0
8	0.01	4.5955e-03	8.102e+02	1.000	0
9	0.01	3.4068e-03	7.920e+02	1.000	0
10	0.00	2.5353e-03	7.788e+02	1.000	0
11	0.01	1.9089e-03	7.690e+02	1.222	10
12	0.01	1.2486e-03	7.626e+02	1.176	7
13	0.01	1.1243e-03	7.570e+02	1.125	7
14	0.01	9.1253e-04	7.524e+02	1.079	7
15	0.01	7.5878e-04	7.486e+02	1.039	6

1 Functions — Alphabetical List

1-286

16	0.01	6.6181e-04	7.454e+02	1.004	6
17	0.01	6.0400e-04	7.424e+02	0.974	6
18	0.01	5.6244e-04	7.396e+02	0.948	6
19	0.01	5.0548e-04	7.372e+02	0.926	5
20	0.01	4.2796e-04	7.351e+02	0.905	5
===					
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
21	0.01	3.4941e-04	7.334e+02	0.887	5
22	0.01	2.9495e-04	7.320e+02	0.871	5
23	0.01	2.6300e-04	7.307e+02	0.857	5
24	0.01	2.5200e-04	7.295e+02	0.844	4
25	0.01	2.4150e-04	7.283e+02	0.833	4
26	0.01	2.0549e-04	7.273e+02	0.823	4
27	0.01	1.6441e-04	7.266e+02	0.813	4
28	0.01	1.3256e-04	7.259e+02	0.805	4
29	0.01	1.1094e-04	7.254e+02	0.798	4
30	0.01	9.2849e-05	7.249e+02	0.791	4
===

mdl =
 ldaModel with properties:

 NumTopics: 4
 WordConcentration: 1
 TopicConcentration: 0.7908
 CorpusTopicProbabilities: [0.2654 0.2531 0.2480 0.2336]
 DocumentTopicProbabilities: [154x4 double]
 TopicWordProbabilities: [3092x4 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

View information about the fit.

mdl.FitInfo

ans = struct with fields:
 TerminationCode: 1
 TerminationStatus: "Relative tolerance on log-likelihood satisfied."
 NumIterations: 30
 NegativeLogLikelihood: 6.3042e+04

 resume

1-287

 Perplexity: 724.9445
 Solver: "cvb0"
 History: [1x1 struct]

Resume fitting the LDA model with a lower log-likelihood tolerance.

tolerance = 1e-5;
updatedMdl = resume(mdl,bag, ...
 'LogLikelihoodTolerance',tolerance)

===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
30	0.00		7.249e+02	0.791	0
31	0.01	8.0569e-05	7.246e+02	0.785	3
32	0.01	7.4692e-05	7.242e+02	0.779	3
33	0.01	6.9802e-05	7.239e+02	0.774	3
34	0.01	6.1154e-05	7.236e+02	0.770	3
35	0.01	5.3163e-05	7.233e+02	0.766	3
36	0.01	4.7807e-05	7.231e+02	0.762	3
37	0.01	4.1820e-05	7.229e+02	0.759	3
38	0.01	3.6237e-05	7.227e+02	0.756	3
39	0.01	3.1819e-05	7.226e+02	0.754	2
40	0.01	2.7772e-05	7.224e+02	0.751	2
41	0.00	2.5238e-05	7.223e+02	0.749	2
42	0.01	2.2052e-05	7.222e+02	0.747	2
43	0.01	1.8471e-05	7.221e+02	0.745	2
44	0.01	1.5638e-05	7.221e+02	0.744	2
45	0.01	1.3735e-05	7.220e+02	0.742	2
46	0.01	1.2298e-05	7.219e+02	0.741	2
47	0.01	1.0905e-05	7.219e+02	0.739	2
48	0.01	9.5581e-06	7.218e+02	0.738	2
===

updatedMdl =
 ldaModel with properties:

 NumTopics: 4
 WordConcentration: 1
 TopicConcentration: 0.7383
 CorpusTopicProbabilities: [0.2679 0.2517 0.2495 0.2309]
 DocumentTopicProbabilities: [154x4 double]

1 Functions — Alphabetical List

1-288

 TopicWordProbabilities: [3092x4 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

View information about the fit.

updatedMdl.FitInfo

ans = struct with fields:
 TerminationCode: 1
 TerminationStatus: "Relative tolerance on log-likelihood satisfied."
 NumIterations: 48
 NegativeLogLikelihood: 6.3001e+04
 Perplexity: 721.8357
 Solver: "cvb0"
 History: [1x1 struct]

Input Arguments
ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object. To resume fitting a model, you must
fit ldaMdl with solver 'savb', 'avb', or 'cvb0'.

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value

 resume

1-289

counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Note The arguments bag and counts must be the same used to fit ldaMdl.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'LogLikelihoodTolerance',0.001 specifies a log-likelihood tolerance of
0.001.

Solver Options

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding

to documents.

This option only applies if you specify the input documents as a matrix of word counts.

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

FitTopicConcentration — Option for fitting topic concentration parameter
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'FitTopicConcentration' and either true or false.

1 Functions — Alphabetical List

1-290

The default value is the value used to fit ldaMdl.
Example: 'FitTopicConcentration',true
Data Types: logical

FitTopicProbabilities — Option for fitting topic probabilities
true | false

Option for fitting topic concentration, specified as the comma-separated pair consisting of
'FitTopicConcentration' and either true or false.

The default value is the value used to fit ldaMdl.

The function fits the Dirichlet prior a a= ()0 1 2
p p pKL on the topic mixtures,

where a0 is the topic concentration and p pK1
, ,º are the corpus topic probabilities

which sum to 1.
Example: 'FitTopicProbabilities',true
Data Types: logical

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

Batch Solver Options

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.

This option supports models fitted with batch solvers only ('cgs', 'avb', and 'cvb0').
Example: 'IterationLimit',200

 resume

1-291

Stochastic Solver Options

DataPassLimit — Maximum number of passes through data
1 (default) | positive integer

Maximum number of passes through the data, specified as the comma-separated pair
consisting of 'DataPassLimit' and a positive integer.

If you specify 'DataPassLimit' but not 'MiniBatchLimit', then the default value of
'MiniBatchLimit' is ignored. If you specify both 'DataPassLimit' and
'MiniBatchLimit', then resume uses the argument that results in processing the
fewest observations.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'DataPassLimit',2

MiniBatchLimit — Maximum number of mini-batch passes
positive integer

Maximum number of mini-batch passes, specified as the comma-separated pair consisting
of 'MiniBatchLimit' and a positive integer.

If you specify 'MiniBatchLimit' but not 'DataPassLimit', then resume ignores the
default value of 'DataPassLimit'. If you specify both 'MiniBatchLimit' and
'DataPassLimit', then resume uses the argument that results in processing the fewest
observations. The default value is ceil(numDocuments/MiniBatchSize), where
numDocuments is the number of input documents.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'MiniBatchLimit',200

MiniBatchSize — Mini-batch size
1000 (default) | positive integer

Mini-batch size, specified as the comma-separated pair consisting of 'MiniBatchLimit'
and a positive integer. The function processes MiniBatchSize documents in each
iteration.

This option supports models fitted with stochastic solvers only ('savb').
Example: 'MiniBatchSize',512

1 Functions — Alphabetical List

1-292

Display Options

ValidationData — Validation data
[] (default) | bagOfWords object | bagOfNgrams object | sparse matrix of word counts

Validation data to monitor optimization convergence, specified as the comma-separated
pair consisting of 'ValidationData' and a bagOfWords object, a bagOfNgrams object,
or a sparse matrix of word counts. If the validation data is a matrix, then the data must
have the same orientation and the same number of words as the input documents.

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

• 0 – Do not display verbose output.
• 1 – Display progress information.

Example: 'Verbose',0

Output Arguments
updatedMdl — Updated LDA model
ldaModel object (default)

Updated LDA model, returned as an ldaModel object.

See Also
bagOfNgrams | bagOfWords | fitlda | ldaModel | logp | predict | transform |
wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Choose Number of Topics for LDA Model”
“Compare LDA Solvers”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”

 resume

1-293

Introduced in R2017b

1 Functions — Alphabetical List

1-294

splitSentences
Split text into sentences

Syntax
newStr = splitSentences(str)

Description
newStr = splitSentences(str) splits str into an array of sentences.

Examples

Split Text into Sentences

Read the text from the example file sonnets.txt and split it into sentences.

filename = "sonnets.txt";
str = extractFileText(filename);
sentences = splitSentences(str);

View the first few sentences.

sentences(1:10)

ans = 10x1 string array
 "THE SONNETS"
 "by William Shakespeare"
 "I"
 "From fairest creatures we desire increase,..."
 "II"
 "When forty winters shall besiege thy brow,..."
 "How much more praise deserv'd thy beauty's use,..."
 "This were to be new made when thou art old,..."
 "III"

 splitSentences

1-295

 "Look in thy glass and tell the face thou viewest..."

Input Arguments
str — Input text
string scalar | character vector | scalar cell array containing a character vector

Input text, specified as a string scalar, a character vector, or a scalar cell array containing
a character vector.
Data Types: string | char | cell

Output Arguments
newStr — Output text
string array | character vector | cell array of character vectors

Output text, returned as a string array, a character vector, or cell array of character
vectors. str and newStr have the same data type.

Algorithms
If emoticons or emoji characters appear after a terminating punctuation character, then
the function splits the sentence after the emoticons and emoji.

See Also
addSentenceDetails | corpusLanguage | decodeHTMLEntities |
erasePunctuation | eraseTags | eraseURLs | lower | tokenizedDocument | upper

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”

1 Functions — Alphabetical List

1-296

Introduced in R2018a

 splitSentences

1-297

stopWords
List of stop words

Syntax
words = stopWords
words = stopWords('Language',language)

Description
words = stopWords returns a string array of common English words which can be
removed from documents before analysis.

words = stopWords('Language',language) specifies the stop word language.

Tip To remove stop words from tokenized documents, use removeStopWords.

Examples

Remove Stop Words from Bag-of-Words Model

Remove the stop words from a bag-of-words model by inputting a list of stop words to
removeWords. Stop words are words such as "a", "the", and "in" which are commonly
removed from text before analysis.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
bag = bagOfWords(documents);
newBag = removeWords(bag,stopWords)

newBag =
 bagOfWords with properties:

1 Functions — Alphabetical List

1-298

 Counts: [2x4 double]
 Vocabulary: ["example" "short" "sentence" "second"]
 NumWords: 4
 NumDocuments: 2

Input Arguments
language — Stop word language
'en' (default) | 'ja'

Stop word language, specified as one of the following:

• 'en' – English
• 'ja' – Japanese

For more information about language support in Text Analytics Toolbox, see “Language
Support”.

Definitions

Language Considerations
The removeStopWords function removes English and Japanese stop words only.

To remove stop words from other languages, use removeWords and specify your own
stop words to remove.

See Also
bagOfNgrams | bagOfWords | normalizeWords | removeLongWords |
removeShortWords | removeStopWords | removeWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

 stopWords

1-299

“Language Support”
“Japanese Language Support”

Introduced in R2017b

1 Functions — Alphabetical List

1-300

string
Convert scalar document to string vector

Syntax
words = string(document)

Description
words = string(document) converts a scalar tokenizedDocument to a string array
of words.

Examples

Convert Document to String

Convert a scalar tokenized document to a string array of words.

document = tokenizedDocument("an example of a short sentence")

document =
 tokenizedDocument:

 6 tokens: an example of a short sentence

words = string(document)

words = 1x6 string array
 "an" "example" "of" "a" "short" "sentence"

 string

1-301

Input Arguments
document — Input document
scalar tokenizedDocument

Input document, specified as a scalar tokenizedDocument object.

Output Arguments
words — Output words
string vector

Output words, returned as a string vector.

See Also
context | doc2cell | doclength | joinWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

1 Functions — Alphabetical List

1-302

textscatter
2-D scatter plot of text

Syntax
ts = textscatter(x,y,str)
ts = textscatter(xy,str)
ts = textscatter(ax, ___)
ts = textscatter(___ ,Name,Value)

Description
ts = textscatter(x,y,str) creates a text scatter plot with elements of str at the
locations specified by the vectors x and y, and returns the resulting TextScatter object.

ts = textscatter(xy,str) uses locations specified by the rows of xy. This syntax is
equivalent to textscatter(xy(:,1),xy(:,2),str).

ts = textscatter(ax, ___) plots into axes ax. You can use any input arguments
from previous syntaxes.

ts = textscatter(___ ,Name,Value) specifies additional TextScatter properties
using one or more name-value pair arguments.

Examples

Create Text Scatter Plot

Plot a string array of numbers at random points on a text scatter plot.

x = rand(50,1);
y = rand(50,1);
str = string(1:50);

 textscatter

1-303

figure
textscatter(x,y,str);

Alternatively, you can pass the coordinates x and y as a matrix xy, where x and y are the
columns of xy.

xy = [x y];
figure
textscatter(xy,str)

1 Functions — Alphabetical List

1-304

Specify Word Colors

Create text scatter plot of a word embedding and specify word colors.

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding

emb =
 wordEmbedding with properties:

 textscatter

1-305

 Dimension: 300
 Vocabulary: [1×1000000 string]

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of
length 300.

words = emb.Vocabulary(1:500);
V = word2vec(emb,words);
size(V)

ans = 1×2

 500 300

Embed the word vectors in two-dimensional space using tsne.

XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. Specify the
word colors to be random.

numWords = numel(words);
colorData = rand(numWords,3);
figure
textscatter(XY,words,'ColorData',colorData)
title("Word Embedding t-SNE Plot")

1 Functions — Alphabetical List

1-306

Input Arguments
x — x values
vector

x values, specified as a vector. x, y, and str must be of equal length.
Example: [1 2 3]

y — y values
vector

 textscatter

1-307

y values, specified as a vector. x, y, and str must be of equal length.
Example: [1 2 3]

xy — x and y values
matrix

x and y values, specified as a matrix with two columns. xy(i,1) and xy(i,2)
correspond to the x and y values of the ith element of str, respectively. xy must have the
numel(str) rows.

textscatter(xy,str) is equivalent to textscatter(xy(:,1),xy(:,2),str).
Example: [1 2 3]

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. x, y, and str
must be of equal length.
Example: ["one" "two" "three"]
Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see
TextScatter Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

1 Functions — Alphabetical List

1-308

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text,
set TextDensityPercentage to 100. To show no text, set TextDensityPercentage to
0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.
Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

• 'auto' — For each marker, use the same color as the corresponding text labels.
• 'none' — Do not show markers.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a

three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1]; for example,
[0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-
element row vector whose elements specify the intensities of the red, green, and blue
components of the color. The intensities must be in the range [0,1]; for example,
[0.5 0.6 0.7].

• Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.

 textscatter

1-309

• Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each
category using the Colors property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments
ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart
after it has been created. For more information, see TextScatter Properties.

See Also
fastTextWordEmbedding | textscatter3 | tokenizedDocument | word2vec |
wordEmbedding | wordcloud

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-310

textscatter3
3-D scatter plot of text

Syntax
ts = textscatter3(x,y,z,str)
ts = textscatter3(xyz,str)
ts = textscatter3(ax, ___)
ts = textscatter3(___ ,Name,Value)

Description
ts = textscatter3(x,y,z,str) creates a 3-D text scatter plot with elements of str
at the locations specified by the vectors x, y, and z.

ts = textscatter3(xyz,str) creates a 3-D text scatter plot with elements of str at
the locations specified by the rows of xyz. This syntax is equivalent to
textscatter(xyz(:,1),xyz(:,2),xyz(:,3),str).

ts = textscatter3(ax, ___) plots into axes object ax. Use this syntax with any of
the input arguments in previous syntaxes.

ts = textscatter3(___ ,Name,Value) specifies additional TextScatter properties
using one or more name-value pair arguments.

Examples

Create 3-D Text Scatter Plot

Plot a string array of numbers at random points on a 3-D text scatter plot.

x = rand(50,1);
y = rand(50,1);
z = rand(50,1);

 textscatter3

1-311

str = string(1:50);
figure
textscatter3(x,y,z,str);

Alternatively, you can pass the coordinates x, y, and z as a matrix xyz, where x, y, and z
are the columns of xyz.

xyz = [x y z];
figure
textscatter3(xyz,str)

1 Functions — Alphabetical List

1-312

Specify Word Colors

Create text scatter plot of a word embedding and specify word colors.

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding;

 textscatter3

1-313

Convert the first 250 words to vectors using word2vec. V is a matrix of word vectors of
length 300.

words = emb.Vocabulary(1:250);
V = word2vec(emb,words);
size(V)

ans = 1×2

 250 300

Embed the word vectors in a 3-D space using tsne.

XYZ = tsne(V,'NumDimensions',3);

Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot. Specify the
word colors to be random.

numWords = numel(words);
colorData = rand(numWords,3);
figure
textscatter3(XYZ,words,'ColorData',colorData)
title("Word Embedding t-SNE Plot")

1 Functions — Alphabetical List

1-314

Input Arguments
x — x values
vector

x values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

y — y values
vector

 textscatter3

1-315

y values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

z — z values
vector

z values, specified as a vector. x, y, z, and str must be of equal length.
Example: [1 2 3]

str — Input text
string vector | cell array of character vectors

Input text, specified as a string array or cell array of character vectors. x, y, z, and str
must be of equal length.
Example: ["one" "two" "three"]
Data Types: string | cell

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the function uses the current axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','*' specifies the markers to be asterisks.

The TextScatter object properties listed here are only a subset. For a complete list, see
TextScatter Properties.

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text,
set TextDensityPercentage to 100. To show no text, set TextDensityPercentage to
0.

1 Functions — Alphabetical List

1-316

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.
Example: 10

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

• 'auto' — For each marker, use the same color as the corresponding text labels.
• 'none' — Do not show markers.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a

three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1]; for example,
[0.5 0.6 0.7].

Example: [1 0 0]

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-
element row vector whose elements specify the intensities of the red, green, and blue
components of the color. The intensities must be in the range [0,1]; for example,
[0.5 0.6 0.7].

• Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.

• Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each
category using the Colors property

 textscatter3

1-317

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.
Example: [1 0 0; 0 1 0; 0 0 1]

Output Arguments
ts — TextScatter object
TextScatter object

TextScatter object. Use ts to access and modify properties of the text scatter chart
after it has been created. For more information, see TextScatter Properties.

See Also
fastTextWordEmbedding | textscatter | tokenizedDocument | word2vec |
wordEmbedding | wordcloud

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-318

TextScatter Properties
Control text scatter chart appearance and behavior

Description
TextScatter properties control the appearance and behavior of TextScatter object.
By changing property values, you can modify certain aspects of the text scatter chart.

Properties
Text

TextData — Text labels
string array | cell array of character vectors

Text labels, specified as a string array, or a cell array of character vectors.
Example: ["word1" "word2" "word3"]
Data Types: string | cell

TextDensityPercentage — Percentage of text data to show
60 (default) | scalar from 0 through 100

Percentage of text data to show, specified as a scalar from 0 through 100. To show all text,
set TextDensityPercentage to 100. To show no text, set TextDensityPercentage to
0.

If you set TextDensityPercentage to 100, then the software does not plot markers.
Example: 70

MaxTextLength — Maximum length of text labels
40 (default) | positive integer

Maximum length of text labels, specified as a positive integer. The software truncates the
text labels to this length and adds ellipses at the point of truncation.
Example: 10

 TextScatter Properties

1-319

Font Style

FontName — Font name
system supported font name | 'FixedWidth'

Font name, specified as the name of the font to use or 'FixedWidth'. To display and
print properly, the font name must be a font that your system supports. The default font
depends on the specific operating system and locale.

To use a fixed-width font that looks good in any locale, use 'FixedWidth'. The
'FixedWidth' value relies on the root FixedWidthFontName property. Setting the root
FixedWidthFontName property causes an immediate update of the display to use the
new font.
Example: 'Cambria'

FontSize — Font size
10 (default) | scalar value greater than zero

Font size, specified as a scalar value greater than zero in point units. One point equals
1/72 inch. To change the font units, use the FontUnits property.
Example: 12
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

FontAngle — Character slant
'normal' (default) | 'italic'

Character slant, specified as 'normal' or 'italic'. Not all fonts have both font styles.
Therefore, the italic font might look the same as the normal font.

FontWeight — Thickness of text characters
'normal' (default) | 'bold'

Thickness of the text characters, specified as one of these values:

• 'normal' — Default weight as defined by the particular font
• 'bold' — Thicker character outlines than normal

MATLAB uses the FontWeight property to select a font from those available on your
system. Not all fonts have a bold font weight. Therefore, specifying a bold font weight still
can result in the normal font weight.

1 Functions — Alphabetical List

1-320

FontSmoothing — Smooth font character appearance
'on' (default) | 'off'

Smooth font character appearance, specified as one of these values:

• 'on' — Apply font smoothing. Reduce the appearance of jaggedness in the text
characters to make the text easier to read.

• 'off' — Do not apply font smoothing.

Text Box

EdgeColor — Color of box outline
'none' (default) | RGB triplet | character vector of color name

Color of box outline, specified as 'none', a three-element RGB triplet, or a character
vector of a color name. The default edge color of 'none' makes the box outline invisible.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Example: 'blue'
Example: [0 0 1]

BackgroundColor — Color of text box background
'none' (default) | 'data' | RGB triplet

 TextScatter Properties

1-321

Color of text box background, specified as one of these values:

• 'none'— Make the text box background transparent.
• 'data'— Use background color specified by ColorData. The software automatically

chooses a foreground to complement the background color.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a

three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1]; for example,
[0.5 0.6 0.7].

Example: [1 0 0]

Margin — Space around text within text box
3 (default) | positive scalar

The space around the text within the text box, specified as a positive scalar in point units.

MATLAB uses the Extent property value plus the Margin property value to determine
the size of the text box.
Example: 8
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

Markers

MarkerColor — Marker colors
'auto' (default) | 'none' | RGB triplet

Marker colors, specified as one of these values:

• 'auto' — For each marker, use the same color as the corresponding text labels.
• 'none' — Do not show markers.
• RGB triplet — Use the same color for all the markers in the plot. An RGB triplet is a

three-element row vector whose elements specify the intensities of the red, green, and
blue components of the color. The intensities must be in the range [0,1]; for example,
[0.5 0.6 0.7].

Example: [1 0 0]

MarkerSize — Marker size
6 (default) | positive scalar

1 Functions — Alphabetical List

1-322

Marker size, specified as a positive scalar.
Example: 10

Data

XData — x values
[] (default) | scalar | vector

x values, specified as a scalar or a vector. The text scatter plot displays an individual
marker for each value in XData.

The input argument X to the textscatter and textscatter3 functions set the x
values. XData and YData must have equal lengths.
Example: [1 2 4 2 6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

XDataSource — Variable linked to XData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to XData, specified as a character vector containing a MATLAB workspace
variable name. MATLAB evaluates the variable in the base workspace to generate the
XData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the XData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'x'

YData — y values
[] (default) | scalar | vector

y values, specified as a scalar or a vector. The text scatter plot displays an individual
marker for each value in YData.

 TextScatter Properties

1-323

The input argument Y to the textscatter and textscatter3 functions set the y
values. XData and YData must have equal lengths.
Example: [1 3 3 4 6]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

YDataSource — Variable linked to YData
'' (default) | character vector containing MATLAB workspace variable name

Variable linked to YData, specified as a character vector containing a MATLAB workspace
variable name. MATLAB evaluates the variable in the base workspace to generate the
YData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the YData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'y'

ZData — z values
[] (default) | scalar | vector

z values, specified as a scalar or a vector.

• For 2-D scatter plots, ZData is empty by default.
• For 3-D scatter plots, the input argument Z to the scatter3 function sets the z

values. XData, YData, and ZData must have equal lengths.

Example: [1 2 2 1 0]
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | categorical | datetime | duration

ZDataSource — Variable linked to ZData
'' (default) | character vector containing MATLAB workspace variable name

1 Functions — Alphabetical List

1-324

Variable linked to ZData, specified as a character vector containing a MATLAB workspace
variable name. MATLAB evaluates the variable in the base workspace to generate the
ZData.

By default, there is no linked variable so the value is an empty character vector, ''. If you
link a variable, then MATLAB does not update the ZData values immediately. To force an
update of the data values, use the refreshdata function.

Note If you change one data source property to a variable that contains data of a
different dimension, you might cause the function to generate a warning and not render
the graph until you have changed all data source properties to appropriate values.

Example: 'z'

ColorData — Text colors
[] (default) | RGB triplet | matrix of RGB triplets | categorical vector

Text colors, specified as one of these values:

• RGB triplet — Use the same color for all the text in the plot. An RGB triplet is a three-
element row vector whose elements specify the intensities of the red, green, and blue
components of the color. The intensities must be in the range [0,1]; for example,
[0.5 0.6 0.7].

• Three-column matrix of RGB triplets — Use a different color for each text label in the
plot. Each row of the matrix defines one color. The number of rows must equal the
number of text labels.

• Categorical vector — Use a different color for each category in the vector. Specify
ColorData as a vector the same length as XData. Specify the colors for each
category using the Colors property

Example: [1 0 0; 0 1 0; 0 0 1]

Colors — Category colors
matrix of RGB triplets

Category colors, specified as a matrix of RGB triplets. An RGB triplet is a three-element
row vector whose elements specify the intensities of the red, green, and blue components
of the color. The intensities must be in the range [0,1]; for example, [0.5 0.6 0.7].

By default, Colors is equal to the ColorOrder property of the axes object.

 TextScatter Properties

1-325

Example: [1 0 0; 0 1 0; 0 0 1]

Visibility

Visible — State of visibility
'on' (default) | 'off'

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

Identifiers

Type — Type of graphics object
'textscatter'

This property is read-only.

Type of graphics object, returned as 'textscatter'. Use this property to find all objects
of a given type within a plotting hierarchy; for example, searching for the type using
findobj.

Tag — User-specified tag
'' (default) | character vector

This property is read-only.

User-specified tag to associate with the object, specified as a character vector. Tags
provide a way to identify graphics objects. Use this property to find all objects with a
specific tag within a plotting hierarchy; for example, searching for the tag using
findobj.
Example: 'January Data'

UserData — Data to associate with object
[] (default) | any MATLAB data

This property is read-only.

Data to associate with the object, specified as any MATLAB data; for example, a scalar,
vector, matrix, cell array, character array, table, or structure. MATLAB does not use this
data.

1 Functions — Alphabetical List

1-326

To associate multiple sets of data or to attach a field name to the data, use the
getappdata and setappdata functions.
Example: 1:100

DisplayName — Text used for legend label
'' (default) | character vector

This property is read-only.

Text used for the legend label, specified as a character vector. If you do not specify the
text, then the legend uses a label of the form 'dataN'. The legend does not display until
you call the legend command.
Example: 'Label Text'

Annotation — Control for including or excluding object from legend
Annotation object

Control for including or excluding the object from a legend, returned as an Annotation
object. Set the underlying IconDisplayStyle property to one of these values:

• 'on' — Include the object in the legend (default).
• 'off' — Do not include the object in the legend.

For example, exclude a stem chart from the legend.

p = plot(1:10,'DisplayName','Line Chart');
hold on
s = stem(1:10,'DisplayName','Stem Chart');
hold off
s.Annotation.LegendInformation.IconDisplayStyle = 'off';
legend('show')

Alternatively, you can control the items in a legend using the legend function. Specify
the first input argument as a vector of the graphics objects to include.

p = plot(1:10,'DisplayName','Line Chart');
hold on
s = stem(1:10,'DisplayName','Stem Chart');
hold off
legend(p)

 TextScatter Properties

1-327

Parent/Child

Parent — Parent
Axes object | PolarAxes object | Group object | Transform object

Parent, specified as an Axes, PolarAxes, Group, or Transform object.

Children — Children
empty GraphicsPlaceholder array

The object has no children. You cannot set this property.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command-line, but allows callback functions to
access it.

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. This includes get, findobj, gca, gcf, gco, newplot, cla, clf, and
close.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Interactive Control

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

1 Functions — Alphabetical List

1-328

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — You can access properties of the clicked object from within the
callback function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

Example: @myCallback
Example: {@myCallback,arg3}

UIContextMenu — Context menu
uicontextmenu object

Context menu, specified as a uicontextmenu object. Use this property to display a
context menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Selected — Selection state
'off' (default) | 'on'

Selection state, specified as one of these values:

 TextScatter Properties

1-329

• 'on' — Selected. If you click the object when in plot edit mode, then MATLAB sets its
Selected property to 'on'. If the SelectionHighlight property also is set to
'on', then MATLAB displays selection handles around the object.

• 'off' — Not selected.

SelectionHighlight — Display of selection handles when selected
'on' (default) | 'off'

Display of selection handles when selected, specified as one of these values:

• 'on' — Display selection handles when the Selected property is set to 'on'.
• 'off' — Never display selection handles, even when the Selected property is set to

'on'.

Callback Execution Control

PickableParts — Ability to capture mouse clicks
'visible' (default) | 'none'

Ability to capture mouse clicks, specified as one of these values:

• 'visible' — Can capture mouse clicks when visible. The Visible property must be
set to 'on' and you must click a part of the TextScatter object that has a defined
color. You cannot click a part that has an associated color property set to 'none'. If
the plot contains markers, then the entire marker is clickable if either the edge or the
fill has a defined color. The HitTest property determines if the TextScatter object
responds to the click or if an ancestor does.

• 'none' — Cannot capture mouse clicks. Clicking the TextScatter object passes the
click to the object below it in the current view of the figure window. The HitTest
property of the TextScatter object has no effect.

HitTest — Response to captured mouse clicks
'on' (default) | 'off'

Response to captured mouse clicks, specified as one of these values:

• 'on' — Trigger the ButtonDownFcn callback of the TextScatter object. If you have
defined the UIContextMenu property, then invoke the context menu.

• 'off' — Trigger the callbacks for the nearest ancestor of the TextScatter object
that has a HitTest property set to 'on' and a PickableParts property value that
enables the ancestor to capture mouse clicks.

1 Functions — Alphabetical List

1-330

Note The PickableParts property determines if the TextScatter object can capture
mouse clicks. If it cannot, then the HitTest property has no effect.

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

Note There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is allowed. If interruption is not allowed, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put
in the queue.

If the ButtonDownFcn callback of the TextScatter object is the running callback, then
the Interruptible property determines if it another callback can interrupt it:

• 'on' — Interruptible. Interruption occurs at the next point where MATLAB processes
the queue, such as when there is a drawnow, figure, getframe, waitfor, or pause
command.

• If the running callback contains one of these commands, then MATLAB stops the
execution of the callback at this point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes. For more information, see “Interrupt Callback Execution” (MATLAB).

• If the running callback does not contain one of these commands, then MATLAB
finishes executing the callback without interruption.

• 'off' — Not interruptible. MATLAB finishes executing the running callback without
any interruptions.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

 TextScatter Properties

1-331

Callback queuing specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks.

Note There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is allowed. If interruption is not allowed, then the BusyAction
property of the object owning the interrupting callback determines if it is discarded or put
in the queue.

If the ButtonDownFcn callback of the TextScatter object tries to interrupt a running
callback that cannot be interrupted, then the BusyAction property determines if it is
discarded or put in the queue. Specify the BusyAction property as one of these values:

• 'queue' — Put the interrupting callback in a queue to be processed after the running
callback finishes execution. This is the default behavior.

• 'cancel' — Discard the interrupting callback.

Creation and Deletion Control

CreateFcn — Creation callback
'' (default) | function handle | cell array | character vector

Creation callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you create the object. Setting the CreateFcn
property on an existing object has no effect. You must define a default value for this
property, or define this property using a Name,Value pair during object creation.
MATLAB executes the callback after creating the object and setting all of its properties.

1 Functions — Alphabetical List

1-332

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Created object — You can access properties of the object from within the callback
function. You also can access the object through the CallbackObject property of the
root, which can be queried using the gcbo function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).
Example: @myCallback
Example: {@myCallback,arg3}

DeleteFcn — Deletion callback
'' (default) | function handle | cell array | character vector

Deletion callback, specified as one of these values:

• Function handle
• Cell array containing a function handle and additional arguments
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended)

Use this property to execute code when you delete the object MATLAB executes the
callback before destroying the object so that the callback can access its property values.

If you specify this callback using a function handle, then MATLAB passes two arguments
to the callback function when executing the callback:

• Deleted object — You can access properties of the object from within the callback
function. You also can access the object through the CallbackObject property of the
root, which can be queried using the gcbo function.

• Event data — This argument is empty for this property. Replace it with the tilde
character (~) in the function definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).
Example: @myCallback

 TextScatter Properties

1-333

Example: {@myCallback,arg3}

BeingDeleted — Deletion status
'off' (default) | 'on'

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the delete function of the object begins execution (see the DeleteFcn
property). The BeingDeleted property remains set to 'on' until the object no longer
exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

See Also
bagOfNgrams | bagOfWords | textscatter | textscatter3 | tokenizedDocument |
wordCloudCounts | wordcloud

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-334

tfidf
Term Frequency–Inverse Document Frequency (tf-idf) matrix

Syntax
M = tfidf(bag)
M = tfidf(bag,documents)
M = tfidf(___ ,Name,Value)

Description
M = tfidf(bag) returns a Term Frequency-Inverse Document Frequency (tf-idf) matrix
based on the bag-of-words or bag-of-n-grams model bag.

M = tfidf(bag,documents) returns a tf-idf matrix for the documents in documents
by using the inverse document frequency (IDF) factor computed from bag.

M = tfidf(___ ,Name,Value) specifies additional options using one or more name-
value pair arguments.

Examples

Create Tf-idf Matrix

Create a Term Frequency–Inverse Document Frequency (tf-idf) matrix from a bag-of-
words model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

 tfidf

1-335

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10×10

 3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 3.8918 2.4720 2.5520
 0 0 0 0 0 4.5287 0 0 0 0
 0 0 0 0 0 0 0 0 0 2.5520
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 2.5520
 0 0 2.7344 0 0 0 0 0 0 0

Create tf-idf Matrix from New Documents

Create a Term Frequency-Inverse Document Frequency (tf-idf) matrix from a bag-of-words
model and an array of new documents.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words

1 Functions — Alphabetical List

1-336

separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model from the documents.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Create a tf-idf matrix for an array of new documents using the inverse document
frequency (IDF) factor computed from bag.

newDocuments = tokenizedDocument([
 "what's in a name? a rose by any other name would smell as sweet."
 "if music be the food of love, play on."]);
M = tfidf(bag,newDocuments)

M =
 (1,7) 3.2452
 (1,36) 1.2303
 (2,197) 3.4275
 (2,313) 3.6507
 (2,387) 0.6061
 (1,1205) 4.7958
 (1,1835) 3.6507
 (2,1917) 5.0370

 tfidf

1-337

Specify TF Weight Formulas

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Create a tf-idf matrix. View the first 10 rows and columns.

M = tfidf(bag);
full(M(1:10,1:10))

ans = 10×10

 3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 3.8918 2.4720 2.5520
 0 0 0 0 0 4.5287 0 0 0 0
 0 0 0 0 0 0 0 0 0 2.5520
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 2.5520
 0 0 2.7344 0 0 0 0 0 0 0

1 Functions — Alphabetical List

1-338

You can change the contributions made by the TF and IDF factors to the tf-idf matrix by
specifying the TF and IDF weight formulas.

To ignore how many times a word appears in a document, use the binary option of
'TFWeight'. Create a tf-idf matrix and set 'TFWeight' to 'binary'. View the first 10
rows and columns.

M = tfidf(bag,'TFWeight','binary');
full(M(1:10,1:10))

ans = 10×10

 3.6507 4.3438 2.7344 3.6507 4.3438 2.2644 3.2452 1.9459 2.4720 2.5520
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 0 0 0 0 2.5520
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 2.2644 0 0 0 2.5520
 0 0 2.7344 0 0 0 0 0 0 0

Input Arguments
bag — Input bag-of-words or bag-of-n-grams model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a string array or a cell array of character
vectors, then it must be a row vector representing a single document, where each
element is a word.

 tfidf

1-339

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Normalized',true specifies to normalize the frequency counts.

TFWeight — Method to set term frequency factor
'raw' (default) | 'binary' | 'log'

Method to set term frequency (TF) factor, specified as the comma-separated pair
consisting of 'TFWeight' and one of the following:

• 'raw' – Set the TF factor to the unchanged term counts.
• 'binary' – Set the TF factor to the matrix of ones and zeros where the ones indicate

whether a term is in a document.
• 'log' – Set the TF factor to 1 + log(bag.Counts).

Example: 'TFWeight','binary'
Data Types: char

IDFWeight — Method to set inverse document frequency factor
'normal' (default) | 'unary' | 'smooth' | 'max' | 'probabilistic'

Method to set inverse document frequency (IDF) factor, specified as the comma-separated
pair consisting of 'IDFWeight' and one of the following:

• 'normal' – Set the IDF factor to log(N/NT).
• 'unary' – Set the IDF factor to 1.
• 'smooth' – Set the IDF factor to log(1+N/NT).
• 'max' – Set the IDF factor to log(1+max(NT)/NT).
• 'probabilistic' – Set the IDF factor to log((N-NT)/NT).

where N is the number of documents in the bag, and NT is the number of documents
containing each term which is equivalent to sum(bag.Counts).
Example: 'IDFWeight','smooth'
Data Types: char

1 Functions — Alphabetical List

1-340

Normalized — Option to normalize term counts
false (default) | true

Option to normalize term counts, specified as the comma-separated pair consisting of
'Normalized' and true or false. If true, then the function normalizes each vector of
term counts in the Euclidean norm.
Example: 'Normalized',true
Data Types: logical

DocumentsIn — Orientation of output documents
'rows' (default) | 'columns'

Orientation of output documents in the frequency count matrix, specified as the comma-
separated pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Return a matrix of frequency counts with rows corresponding to documents.
• 'columns' – Return a transposed matrix of frequency counts with columns

corresponding to documents.

Data Types: char

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated
pair consisting of 'ForceCellOutput' and true or false.
Data Types: logical

Output Arguments
M — Output Term Frequency-Inverse Document Frequency matrix
sparse matrix | cell array of sparse matrices

Output Term Frequency-Inverse Document Frequency matrix, specified as a sparse matrix
or a cell array of sparse matrices.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns
the outputs as a cell array of sparse matrices. Each element in the cell array is the tf-idf
matrix calculated from the corresponding element of bag.

 tfidf

1-341

See Also
bagOfNgrams | bagOfWords | encode | tokenizedDocument | topkngrams |
topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

1 Functions — Alphabetical List

1-342

tokenizedDocument
Array of tokenized documents for text analysis

Description
A tokenized document is a document represented as a collection of words (also known as
tokens) which is used for text analysis.

Use tokenized documents for the following tasks:

• Detect complex tokens in text such as web addresses, emoticons, emoji, and hashtags.
• Remove words such as stop words using removeWords or removeStopWords.
• Perform word-level preprocessing tasks such as stemming or lemmatization using

normalizeWords.
• Analyze word and n-gram frequencies using bagOfWords and bagOfNgrams objects.
• Add sentence and part-of-speech details using addSentenceDetails and

addPartOfSpeechDetails.
• View details about the tokens using tokenDetails.

Creation

Syntax
documents = tokenizedDocument
documents = tokenizedDocument(str)
documents = tokenizedDocument(str,Name,Value)

Description
documents = tokenizedDocument creates a scalar tokenized document with no
tokens.

 tokenizedDocument

1-343

documents = tokenizedDocument(str) tokenizes the elements of str and returns a
tokenized document array.

documents = tokenizedDocument(str,Name,Value) specifies additional options
using one or more name-value pair arguments.

Input Arguments
str — Input text
string array | character vector | cell array of character vectors | cell array of string arrays

Input text, specified as a string array, character vector, cell array of character vectors, or
cell array of string arrays.

If the input text has not already been split into words, then str must be a string array,
character vector, cell array of character vectors, or a cell array of string scalars.
Example: ["an example of a short document";"a second short document"]
Example: 'an example of a short document'
Example: {'an example of a short document';'a second short document'}
Example: {"an example of a short document";"a second short document"}

If the input text has already been tokenized, then specify 'TokenizeMethod' to be
'none'. If str contains a single document, then it must be a string vector of words, a
row cell array of character vectors, or a cell array containing a single string vector of
words. If str contains multiple documents, then it must be a cell array of string arrays.
Example: ["an" "example" "document"]
Example: {'an','example','document'}
Example: {["an" "example" "of" "a" "short" "document"]}
Example: {["an" "example" "of" "a" "short" "document"];["a" "second"
"short" "document"]}

Data Types: string | char | cell

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Functions — Alphabetical List

1-344

Example: 'DetectPatterns',{'email-address','web-address'} detects email
addresses and web addresses

TokenizeMethod — Method to tokenize documents
'unicode' | 'mecab' | 'none'

Method to tokenize documents, specified as the comma-separated pair consisting of
'TokenizeMethod' and one of the following:

• 'unicode' – Tokenize input text. If str is a cell array, then the elements of str must
be string scalars or character vectors. If 'Language' is 'en', then 'unicode' is the
default.

• 'mecab' – Tokenize Japanese text using the MeCab tokenizer. If 'Language' is 'ja',
then 'mecab' is the default.

• 'none' – Do not tokenize the input text.

If the input text has already been tokenized, then specify 'TokenizeMethod' to be
'none'. If str contains a single document, then it must be a string vector of words, a
row cell array of character vectors, or a cell array containing a single string vector of
words. If str contains multiple documents, then it must be a cell array of string arrays.

If 'TokenizeMethod' is 'none', then the function tokenDetails returns an empty
table. To add tokens with document and sentence numbers to the table, use
addSentenceDetails.
Example: 'none'

DetectPatterns — Patterns of complex tokens to detect
'all' (default) | character vector | string array | cell array of character vectors

Patterns of complex tokens to detect, specified as the comma-separated pair consisting of
'DetectPatterns' and 'none', 'all', or a string or cell array containing one or more
of the following:

• 'email-address' – Detect email addresses. For example, treat user@domain.com
as a single token.

• 'web-address' – Detect web addresses. For example, treat www.mathworks.com as
a single token.

• 'hashtag' – Detect hashtags. For example, treat #MATLAB as a single token.
• 'at-mention' – Detect at-mentions. For example, treat @MathWorks as a single

token.

 tokenizedDocument

1-345

• 'emoticon' – Detect emoticons. For example, treat :-D as a single token.

If DetectPatterns is 'none', then the function does not detect any complex token
patterns. If DetectPatterns is 'all', then the function detects all the listed complex
token patterns.
Example: 'DetectPatterns','hashtag'
Example: 'DetectPatterns',{'email-address','web-address'}
Data Types: char | string | cell

TopLevelDomains — Top-level domains to use for web address detection
character vector | string array | cell array of character vectors

Top-level domains to use for web address detection, specified as the comma-separated
pair consisting of 'TopLevelDomains' and a character vector, string array, or cell array
of character vectors. By default, the function uses the output of topLevelDomains.

This option only applies if 'DetectPatterns' is 'all' or contains 'web-address'.
Example: 'TopLevelDomains',["com" "net" "org"]
Data Types: char | string | cell

Language — Language
'en' | 'ja'

Language, specified as the comma-separated pair consisting of 'Language' and one of
the following:

• 'en' – English. This option also sets the default value for 'TokenizeMethod' to
'unicode'.

• 'ja' – Japanese. This option also sets the default value for 'TokenizeMethod' to
'mecab'.

If you do not specify a value, then the function detects the language from the input text
using the corpusLanguage function.

This option specifies the language details of the tokens. To view the language details of
the tokens, use tokenDetails. These language details determine the behavior of the
removeStopWords, addPartOfSpeechDetails, normalizeWords, and
addSentenceDetails functions on the tokens.

1 Functions — Alphabetical List

1-346

For more information about language support in Text Analytics Toolbox, see “Language
Support”.
Example: 'Language','ja'

Properties
Vocabulary — Unique words in the documents
string array

Unique words in the documents, specified as a string array. The words do not appear in
any particular order.
Data Types: string

Object Functions

Preprocessing
erasePunctuation Erase punctuation from text and documents
removeStopWords Remove stop words from documents
removeWords Remove selected words from documents or bag-of-words

model
normalizeWords Stem or lemmatize words
removeEmptyDocuments Remove empty documents from tokenized document array,

bag-of-words model, or bag-of-n-grams model
lower Convert documents to lowercase
upper Convert documents to uppercase

Tokens, Sentences, and Parts of Speech
tokenDetails Details of tokens in tokenized document array
addSentenceDetails Add sentence numbers to documents
addPartOfSpeechDetails Add part-of-speech tags to documents
addLanguageDetails Add language identifiers to documents
addTypeDetails Add token type details to documents
addLemmaDetails Add lemma forms of tokens to documents

 tokenizedDocument

1-347

Export
writeTextDocument Write documents to text file

Manipulation and Conversion
doclength Length of documents in document array
context Search documents for word occurrences in context
joinwords Convert documents to string by joining words
doc2cell Convert documents to cell array of string vectors
string Convert scalar document to string vector
plus Append documents
replace Find and replace substrings in documents
docfun Apply function to words in documents
regexprep Replace text in words of documents using regular expression

Display
wordcloud Create word cloud chart from text, bag-of-words model, bag-of-n-grams

model, or LDA model

Examples

Tokenize Text

Create tokenized documents from a string array.

str = [
 "an example of a short sentence"
 "a second short sentence"]

str = 2x1 string array
 "an example of a short sentence"
 "a second short sentence"

documents = tokenizedDocument(str)

documents =
 2x1 tokenizedDocument:

 6 tokens: an example of a short sentence

1 Functions — Alphabetical List

1-348

 4 tokens: a second short sentence

Detect Complex Tokens

Create a tokenized document from the string str. By default, the function treats the
hashtag "#MATLAB", the emoticon ":-D", and the web address "https://
www.mathworks.com/help" as single tokens.

str = "Learn how to analyze text in #MATLAB! :-D see https://www.mathworks.com/help/";
document = tokenizedDocument(str)

document =
 tokenizedDocument:

 11 tokens: Learn how to analyze text in #MATLAB ! :-D see https://www.mathworks.com/help/

To detect only hashtags as complex tokens, specify the 'DetectPatterns' option to be
'hashtag' only. The function then tokenizes the emoticon ":-D" and the web address
"https://www.mathworks.com/help" into multiple tokens.

document = tokenizedDocument(str,'DetectPatterns','hashtag')

document =
 tokenizedDocument:

 24 tokens: Learn how to analyze text in #MATLAB ! : - D see https : / / www . mathworks . com / help /

Remove Stop Words from Documents

Remove the stop words from an array of documents using removeStopWords. The
tokenizedDocument function detects that the documents are in English, so
removeStopWords removes English stop words.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"]);
newDocuments = removeStopWords(documents)

 tokenizedDocument

1-349

newDocuments =
 2x1 tokenizedDocument:

 3 tokens: example short sentence
 3 tokens: second short sentence

Stem Words in Documents

Stem the words in a document array using the Porter stemmer.

documents = tokenizedDocument([
 "a strongly worded collection of words"
 "another collection of words"]);
newDocuments = normalizeWords(documents)

newDocuments =
 2x1 tokenizedDocument:

 6 tokens: a strongli word collect of word
 4 tokens: anoth collect of word

Search Documents for Word Occurrences

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Search for the word "life".

tbl = context(documents,"life");
head(tbl)

1 Functions — Alphabetical List

1-350

ans=8×3 table
 Context Document Word
 __ ________ ____

 "consumst thy self single life ah thou issueless shalt " 9 10
 "ainted counterfeit lines life life repair times pencil" 16 35
 "d counterfeit lines life life repair times pencil pupi" 16 36
 " heaven knows tomb hides life shows half parts write b" 17 14
 "he eyes long lives gives life thee " 18 69
 "tender embassy love thee life made four two alone sink" 45 23
 "ves beauty though lovers life beauty shall black lines" 63 50
 "s shorn away live second life second head ere beautys " 68 27

View the occurrences in a string array.

tbl.Context

ans = 23x1 string array
 "consumst thy self single life ah thou issueless shalt "
 "ainted counterfeit lines life life repair times pencil"
 "d counterfeit lines life life repair times pencil pupi"
 " heaven knows tomb hides life shows half parts write b"
 "he eyes long lives gives life thee "
 "tender embassy love thee life made four two alone sink"
 "ves beauty though lovers life beauty shall black lines"
 "s shorn away live second life second head ere beautys "
 "e rehearse let love even life decay lest wise world lo"
 "st bail shall carry away life hath line interest memor"
 "art thou hast lost dregs life prey worms body dead cow"
 " thoughts food life sweetseasond showers gro"
 "tten name hence immortal life shall though once gone w"
 " beauty mute others give life bring tomb lives life fa"
 "ve life bring tomb lives life fair eyes poets praise d"
 " steal thyself away term life thou art assured mine li"
 "fe thou art assured mine life longer thy love stay dep"
 " fear worst wrongs least life hath end better state be"
 "anst vex inconstant mind life thy revolt doth lie o ha"
 " fame faster time wastes life thou preventst scythe cr"
 "ess harmful deeds better life provide public means pub"
 "ate hate away threw savd life saying "
 " many nymphs vowd chaste life keep came tripping maide"

 tokenizedDocument

1-351

Tokenize Japanese Text

Tokenize Japanese text using tokenizedDocument. The function automatically detects
Japanese text.

str = [
 "恋に悩み、苦しむ。"
 "恋の悩みで苦しむ。"
 "空に星が輝き、瞬いている。"
 "空の星が輝きを増している。"];
documents = tokenizedDocument(str)

documents =
 4x1 tokenizedDocument:

 6 tokens: 恋 に 悩み 、 苦しむ 。
 6 tokens: 恋 の 悩み で 苦しむ 。
 10 tokens: 空 に 星 が 輝き 、 瞬い て いる 。
 10 tokens: 空 の 星 が 輝き を 増し て いる 。

Definitions

Language Considerations
The tokenizedDocument function has built-in rules for English and Japanese only. For
English text, the 'unicode' tokenization method of tokenizedDocument detects
tokens using rules based on Unicode® Standard Annex #29 [1] and the ICU tokenizer [2],
modified to better detect complex tokens such as hashtags and URLs. For Japanese text,
the 'mecab' tokenization method detects tokens using rules based on the MeCab
tokenizer [3].

For other languages, you can still try using tokenizedDocument. If
tokenizedDocument does not produce useful results, then try tokenizing the text
manually. To create a tokenizedDocument array from manually tokenized text, set the
'TokenizeMethod' option to 'none'.

1 Functions — Alphabetical List

1-352

Compatibility Considerations

tokenizedDocument detects emoticons
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument, by default, detects emoticon tokens. This
behavior makes it easier to analyze text containing emoticons.

In R2017b and R2018a, tokenizedDocument splits emoticon tokens into multiple
tokens. To reproduce this behavior, in tokenizedDocument, specify the
'DetectPatterns' option to be {'email-address','web-
address','hashtag','at-mention'}.

tokenDetails returns token type emoji for emoji characters
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument detects emoji characters and the
tokenDetails function reports these tokens with type "emoji". This makes it easier to
analyze text containing emoji characters.

In R2018a, tokenDetails reports emoji characters with type "other". To find the
indices of the tokens with type "emoji" or "other", use the indices idx =
tdetails.Type == "emoji" | tdetails.Type == "other", where tdetails is a
table of token details.

tokenizedDocument does not split at slash and colon
characters between digits
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument does not split at slash, backslash, or colon
characters when they appear between two digits. This behavior produces better results
when tokenizing text containing dates and times.

In previous versions, tokenizedDocument splits at these characters. To reproduce the
behavior, tokenize the text manually or insert whitespace characters around slash,
backslash, and colon characters before using tokenizedDocument.

 tokenizedDocument

1-353

References
[1] Unicode Text Segmentation. https://www.unicode.org/reports/tr29/

[2] Boundary Analysis. http://userguide.icu-project.org/boundaryanalysis

[3] MeCab: Yet Another Part-of-Speech and Morphological Analyzer. https://
taku910.github.io/mecab/

See Also
addPartOfSpeechDetails | addSentenceDetails | bagOfNgrams | bagOfWords |
context | joinwords | normalizeWords | removeEmptyDocuments |
removeStopWords | removeWords | tokenDetails

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Visualize Text Data Using Word Clouds”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Classify Text Data Using Deep Learning”
“Language Support”
“Japanese Language Support”

Introduced in R2017b

1 Functions — Alphabetical List

1-354

https://www.unicode.org/reports/tr29/
http://userguide.icu-project.org/boundaryanalysis
https://taku910.github.io/mecab/
https://taku910.github.io/mecab/

tokenDetails
Details of tokens in tokenized document array

Syntax
tdetails = tokenDetails(documents)

Description
tdetails = tokenDetails(documents) returns a table of token details for the
tokens in the tokenizedDocument array documents.

Examples

View Token Details of Documents

Create a tokenized document array.

str = [...
 "This is an example document. It has two sentences."
 "This document has one sentence and an emoticon. :)"
 "Here is another example document. :D"];
documents = tokenizedDocument(str);

View the token details of the first few tokens.

tdetails = tokenDetails(documents);
head(tdetails)

ans=8×5 table
 Token DocumentNumber LineNumber Type Language
 __________ ______________ __________ ___________ ________

 "This" 1 1 letters en
 "is" 1 1 letters en

 tokenDetails

1-355

 "an" 1 1 letters en
 "example" 1 1 letters en
 "document" 1 1 letters en
 "." 1 1 punctuation en
 "It" 1 1 letters en
 "has" 1 1 letters en

The type variable contains the type of each token. View the emoticons in the documents.

idx = tdetails.Type == "emoticon";
tdetails(idx,:)

ans=2×5 table
 Token DocumentNumber LineNumber Type Language
 _____ ______________ __________ ________ ________

 ":)" 2 1 emoticon en
 ":D" 3 1 emoticon en

Add Sentence Details to Documents

Create a tokenized document array.

str = [...
 "This is an example document. It has two sentences."
 "This document has one sentence."
 "Here is another example document. It also has two sentences."];
documents = tokenizedDocument(str);

Add sentence details to the documents using addSentenceDetails. This function adds
the sentence numbers to the table returned by tokenDetails. View the updated token
details of the first few tokens.

documents = addSentenceDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×6 table
 Token DocumentNumber SentenceNumber LineNumber Type Language
 __________ ______________ ______________ __________ ___________ ________

 "This" 1 1 1 letters en

1 Functions — Alphabetical List

1-356

 "is" 1 1 1 letters en
 "an" 1 1 1 letters en
 "example" 1 1 1 letters en
 "document" 1 1 1 letters en
 "." 1 1 1 punctuation en
 "It" 1 2 1 letters en
 "has" 1 2 1 letters en

View the token details of the second sentence of the third document.

idx = tdetails.DocumentNumber == 3 & ...
 tdetails.SentenceNumber == 2;
tdetails(idx,:)

ans=6×6 table
 Token DocumentNumber SentenceNumber LineNumber Type Language
 ___________ ______________ ______________ __________ ___________ ________

 "It" 3 2 1 letters en
 "also" 3 2 1 letters en
 "has" 3 2 1 letters en
 "two" 3 2 1 letters en
 "sentences" 3 2 1 letters en
 "." 3 2 1 punctuation en

Add Part-of-Speech Details to Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

View the token details of the first few tokens.

tdetails = tokenDetails(documents);
head(tdetails)

 tokenDetails

1-357

ans=8×5 table
 Token DocumentNumber LineNumber Type Language
 ___________ ______________ __________ _______ ________

 "fairest" 1 1 letters en
 "creatures" 1 1 letters en
 "desire" 1 1 letters en
 "increase" 1 1 letters en
 "thereby" 1 1 letters en
 "beautys" 1 1 letters en
 "rose" 1 1 letters en
 "might" 1 1 letters en

Add part-of-speech details to the documents using the addPartOfSpeechDetails
function. This function first adds sentence information to the documents, and then adds
the part-of-speech tags to the table returned by tokenDetails. View the updated token
details of the first few tokens.

documents = addPartOfSpeechDetails(documents);
tdetails = tokenDetails(documents);
head(tdetails)

ans=8×7 table
 Token DocumentNumber SentenceNumber LineNumber Type Language PartOfSpeech
 ___________ ______________ ______________ __________ _______ ________ ______________

 "fairest" 1 1 1 letters en adjective
 "creatures" 1 1 1 letters en noun
 "desire" 1 1 1 letters en verb
 "increase" 1 1 1 letters en noun
 "thereby" 1 1 1 letters en adverb
 "beautys" 1 1 1 letters en verb
 "rose" 1 1 1 letters en noun
 "might" 1 1 1 letters en auxiliary-verb

Input Arguments
documents — Input documents
tokenizedDocument array

1 Functions — Alphabetical List

1-358

Input documents, specified as a tokenizedDocument array.

Output Arguments
tdetails — Table of token details
table

Table of token details. tdetails has the following variables:

Name Description
Token Token text, returned as a string scalar.
DocumentNumber Index of document that the token belongs

to, returned as a positive integer.
SentenceNumber Sentence number of token in document,

returned as a positive integer. If these
details are missing, then first add sentence
details to documents using the
addSentenceDetails function.

LineNumber Line number of token in document,
returned as a positive integer.

 tokenDetails

1-359

Name Description
Type The type of token, returned as one of the

following:

• 'letters' – string of letter characters
only

• 'digits' – string of digits only
• 'punctuation' – string of punctuation

and symbol characters only
• 'email-address' – detected email

address
• 'web-address' – detected web

address
• 'hashtag' – detected hashtag (starts

with "#" character followed by a letter)
• 'at-mention' – detected at-mention

(starts with "@" character)
• 'emoticon' – detected emoticon
• 'emoji' – detected emoji
• 'other' – does not belong to previous

types

If these details are missing, then first add
type details to documents using the
addTypeDetails function.

1 Functions — Alphabetical List

1-360

Name Description
Language Language of the token, returned as one of

the following:

• 'en' – English
• 'ja' – Japanese

These language details determine the
behavior of the removeStopWords,
addPartOfSpeechDetails,
normalizeWords, and
addSentenceDetails functions on the
tokens.

If these details are missing, then first add
language details to documents using the
addLanguageDetails function.

For more information about language
support in Text Analytics Toolbox, see
“Language Support”.

 tokenDetails

1-361

Name Description
PartOfSpeech Part of speech tag, specified as one of the

following:

• 'adjective'
• 'adposition'
• 'adverb'
• 'auxiliary-verb'
• 'coord-conjunction'
• 'determiner'
• 'interjection'
• 'noun'
• 'numeral'
• 'particle'
• 'pronoun'
• 'proper-noun'
• 'punctuation'
• 'subord-conjunction'
• 'symbol'
• 'verb'
• 'other'

If these details are missing, then first add
part-of-speech details to documents using
the addPartOfSpeechDetails function.

Lemma Lemma form. If these details are missing,
then first lemma details to documents
using the addLemmaDetails function.

1 Functions — Alphabetical List

1-362

Compatibility Considerations

tokenDetails returns token type emoji for emoji characters
Behavior changed in R2018b

Starting in R2018b, tokenizedDocument detects emoji characters and the
tokenDetails function reports these tokens with type "emoji". This makes it easier to
analyze text containing emoji characters.

In R2018a, tokenDetails reports emoji characters with type "other". To find the
indices of the tokens with type "emoji" or "other", use the indices idx =
tdetails.Type == "emoji" | tdetails.Type == "other", where tdetails is a
table of token details.

See Also
addLanguageDetails | addLemmaDetails | addPartOfSpeechDetails |
addSentenceDetails | addTypeDetails | normalizeWords | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Language Support”
“Japanese Language Support”

Introduced in R2018a

 tokenDetails

1-363

topkwords
Most important words in bag-of-words model or LDA topic

Syntax
tbl = topkwords(bag)
tbl = topkwords(bag,k)

tbl = topkwords(ldaMdl,k,topicIdx)

tbl = topkwords(___ ,Name,Value)

Description
tbl = topkwords(bag) returns a table of the five words with the largest word counts
in bag-of-words model bag.

tbl = topkwords(bag,k) returns a table of the k words with the largest word counts.

tbl = topkwords(ldaMdl,k,topicIdx) returns a table of the k words with the
highest probabilities in the latent Dirichlet allocation (LDA) topic topicIdx in the LDA
model ldaMdl.

tbl = topkwords(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Most Frequent Words of Bag-of-Words Model

Create a table of the most frequent words of a bag-of-words model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words

1 Functions — Alphabetical List

1-364

separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Find the top five words.

T = topkwords(bag);

Find the top 20 words in the model.

k = 20;
T = topkwords(bag,k)

T=20×2 table
 Word Count
 ________ _____

 "thy" 281
 "thou" 234
 "love" 162
 "thee" 161
 "doth" 88
 "mine" 63
 "shall" 59
 "eyes" 56
 "sweet" 55
 "time" 53
 "beauty" 52

 topkwords

1-365

 "nor" 52
 "art" 51
 "yet" 51
 "o" 50
 "heart" 50
 ⋮

Highest Probability Words of LDA Topic

Create a table of the words with highest probability of an LDA topic.

To reproduce the results, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents);

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

numTopics = 20;
mdl = fitlda(bag,numTopics,'Verbose',0);

Find the top 20 words of the first topic.

k = 20;
topicIdx = 1;
tbl = topkwords(mdl,k,topicIdx)

tbl=20×2 table
 Word Score

1 Functions — Alphabetical List

1-366

 ________ _________

 "eyes" 0.11155
 "beauty" 0.05777
 "hath" 0.055778
 "still" 0.049801
 "true" 0.043825
 "mine" 0.033865
 "find" 0.031873
 "black" 0.025897
 "look" 0.023905
 "tis" 0.023905
 "kind" 0.021913
 "seen" 0.021913
 "found" 0.017929
 "sin" 0.015937
 "three" 0.013945
 "golden" 0.0099608
 ⋮

Find the top 20 words of the first topic and use inverse mean scaling on the scores.

tbl = topkwords(mdl,k,topicIdx,'Scaling','inversemean')

tbl=20×2 table
 Word Score
 ________ ________

 "eyes" 1.2718
 "beauty" 0.59022
 "hath" 0.5692
 "still" 0.50269
 "true" 0.43719
 "mine" 0.32764
 "find" 0.32544
 "black" 0.25931
 "tis" 0.23755
 "look" 0.22519
 "kind" 0.21594
 "seen" 0.21594
 "found" 0.17326
 "sin" 0.15223
 "three" 0.13143
 "golden" 0.090698

 topkwords

1-367

 ⋮

Create a word cloud using the scaled scores as the size data.

figure
wordcloud(tbl.Word,tbl.Score);

Input Arguments
bag — Input bag-of-words model
bagOfWords object

1 Functions — Alphabetical List

1-368

Input bag-of-words model, specified as a bagOfWords object.

k — Number of words
nonnegative integer

Number of words to return, specified as a positive integer.
Example: 20

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Scaling','inversemean' specifies to use inverse mean scaling on the topic
word probabilities.

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated
pair consisting of 'ForceCellOutput' and true or false.

This option only applies if the input data is a bag-of-words model.
Data Types: logical

Scaling — Scaling to apply to topic word probabilities
'none' (default) | 'inversemean'

Scaling to apply to topic word probabilities, specified as the comma-separated pair
consisting of 'Scaling' and one of the following:

 topkwords

1-369

• 'none' – Return posterior word probabilities.
• 'inversemean' – Normalize the posterior word probabilities per topic by the

geometric mean of the posterior probabilities for this word across all topics. The
function uses the formula Phi.*(log(Phi)-mean(log(Phi),1)), where Phi
corresponds to ldaMdl.TopicWordProbabilities.

This option only applies if the input data is an LDA model.
Example: 'Scaling','inversemean'
Data Types: char

Output Arguments
tbl — Table of top words
table | cell array of tables

Table of top words sorted in order of importance or a cell array of tables.

When the input is a bag-of-words model, the table has the following columns:

Word Word specified as a string
Count Number of times the word appears in the bag-of-words model

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns
the outputs as a cell array of tables. Each element in the cell array is a table containing
the top words of the corresponding element of bag.

When the input is an LDA model, the table has the following columns:

Word Word specified as a string
Score Word probability for the given LDA topic

Tips
• To find the most frequently seen n-grams in a bag-of-n-grams model, use topkngrams.

1 Functions — Alphabetical List

1-370

See Also
bagOfNgrams | bagOfWords | ldaModel | removeInfrequentWords | removeWords |
tfidf | tokenizedDocument | topkngrams

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2017b

 topkwords

1-371

topkngrams
Most frequent n-grams

Syntax
tbl = topkngrams(bag)
tbl = topkngrams(bag,k)
tbl = topkngrams(___ ,Name,Value)

Description
tbl = topkngrams(bag) returns a table listing the five most frequently seen n-grams
in the bag-of-n-grams model bag.

tbl = topkngrams(bag,k) lists the k most frequently seen n-grams in the bag-of-n-
grams model bag.

tbl = topkngrams(___ ,Name,Value) specifies additional options using one or more
name-value pair arguments.

Examples

Most Frequent Bigrams of Bag-of-N-Grams Model

Create a table of the most frequent bigrams of a bag-of-n-grams model.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);

1 Functions — Alphabetical List

1-372

textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-n-grams model.

bag = bagOfNgrams(documents)

bag =
 bagOfNgrams with properties:

 Counts: [154×8799 double]
 Vocabulary: [1×3092 string]
 Ngrams: [8799×2 string]
 NgramLengths: 2
 NumNgrams: 8799
 NumDocuments: 154

Find the top 5 bigrams.

tbl = topkngrams(bag)

tbl=5×3 table
 Ngram Count NgramLength
 ________________ _____ ___________

 "thou" "art" 34 2
 "mine" "eye" 15 2
 "thy" "self" 14 2
 "thou" "dost" 13 2
 "mine" "own" 13 2

Find the top 10 bigrams.

tbl = topkngrams(bag,10)

tbl=10×3 table
 Ngram Count NgramLength
 _________________ _____ ___________

 "thou" "art" 34 2
 "mine" "eye" 15 2
 "thy" "self" 14 2
 "thou" "dost" 13 2
 "mine" "own" 13 2

 topkngrams

1-373

 "thy" "sweet" 12 2
 "thy" "love" 11 2
 "dost" "thou" 10 2
 "thou" "wilt" 10 2
 "love" "thee" 9 2

Count N-Grams of Different Lengths

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-n-grams model. To count n-grams of length 2 and 3 (bigrams and
trigrams), specify 'NgramLengths' to be the vector [2 3].

bag = bagOfNgrams(documents,'NgramLengths',[2 3])

bag =
 bagOfNgrams with properties:

 Counts: [154×18022 double]
 Vocabulary: [1×3092 string]
 Ngrams: [18022×3 string]
 NgramLengths: [2 3]
 NumNgrams: 18022
 NumDocuments: 154

View the 10 most common n-grams of length 2 (bigrams).

topkngrams(bag,10,'NGramLengths',2)

ans=10×3 table
 Ngram Count NgramLength
 _______________________ _____ ___________

1 Functions — Alphabetical List

1-374

 "thou" "art" "" 34 2
 "mine" "eye" "" 15 2
 "thy" "self" "" 14 2
 "thou" "dost" "" 13 2
 "mine" "own" "" 13 2
 "thy" "sweet" "" 12 2
 "thy" "love" "" 11 2
 "dost" "thou" "" 10 2
 "thou" "wilt" "" 10 2
 "love" "thee" "" 9 2

View the 10 most common n-grams of length 3 (trigrams).

 topkngrams(bag,10,'NGramLengths',3)

ans=10×3 table
 Ngram Count NgramLength
 ____________________________ _____ ___________

 "thy" "sweet" "self" 4 3
 "why" "dost" "thou" 4 3
 "thy" "self" "thy" 3 3
 "thou" "thy" "self" 3 3
 "mine" "eye" "heart" 3 3
 "thou" "shalt" "find" 3 3
 "fair" "kind" "true" 3 3
 "thou" "art" "fair" 2 3
 "love" "thy" "self" 2 3
 "thy" "self" "thou" 2 3

Input Arguments
bag — Input bag-of-n-grams model
bagOfNgrams object

Input bag-of-n-grams model, specified as a bagOfNgrams object.

k — Number of n-grams
nonnegative integer

 topkngrams

1-375

Number of n-grams to return, specified as a positive integer.
Example: 20

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NgramLengths',[2 3] specifies to return the top bigrams and trigrams.

NgramLengths — N-gram lengths
positive integer | vector of positive integers

N-gram lengths, specified as the comma separated pair consisting of 'NgramLengths'
and a positive integer or a vector of positive integers.

If you specify NgramLengths, then the function returns n-grams of these lengths only. If
you do not specify NgramLengths, then the function returns the top n-grams regardless
of length.
Example: [1 2 3]

ForceCellOutput — Indicator for forcing output to be returned as cell array
false (default) | true

Indicator for forcing output to be returned as cell array, specified as the comma separated
pair consisting of 'ForceCellOutput' and true or false.
Data Types: logical

Output Arguments
tbl — Table of top n-grams
table | cell array of tables

Table of top n-grams sorted in order of frequency or a cell array of tables.

The table has the following columns:

1 Functions — Alphabetical List

1-376

Ngram N-gram specified as a string vector
Count Number of times the n-gram appears in the bag-of-n-grams model.
NgramLength Length of the n-gram.

If bag is a non-scalar array or 'ForceCellOutput' is true, then the function returns
the outputs as a cell array of tables. Each element in the cell array is a table containing
the top n-grams of the corresponding element of bag.

See Also
bagOfNgrams | bagOfWords | removeInfrequentNgrams | removeNgrams | tfidf |
tokenizedDocument | topkwords

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”
“Analyze Text Data Using Topic Models”
“Analyze Text Data Using Multiword Phrases”
“Visualize Text Data Using Word Clouds”
“Classify Text Data Using Deep Learning”

Introduced in R2018a

 topkngrams

1-377

topLevelDomains
List of top-level domains

Syntax
domains = topLevelDomains

Description
domains = topLevelDomains returns a string array of common top-level internet
domain names which you can use to tokenize documents containing URLs.

Examples

List of Top-Level Domains

View list of top-level domains used to detect web addresses in strings. Reshape the output
for readability.

domains = topLevelDomains;
reshape(domains, [], 5)

ans = 51x5 string array
 "com" "ck" "hn" "mp" "si"
 "edu" "cl" "hr" "mq" "sj"
 "gov" "cm" "ht" "mr" "sk"
 "int" "cn" "hu" "ms" "sl"
 "mil" "co" "id" "mt" "sm"
 "net" "cr" "ie" "mu" "sn"
 "org" "cu" "il" "mv" "so"
 "info" "cv" "im" "mw" "sr"
 "ac" "cw" "in" "mx" "st"
 "ad" "cx" "io" "my" "su"
 "ae" "cy" "iq" "mz" "sv"
 "af" "cz" "ir" "na" "sx"

1 Functions — Alphabetical List

1-378

 "ag" "de" "is" "nc" "sy"
 "ai" "dj" "it" "ne" "sz"
 "am" "dk" "je" "nf" "tc"
 "ao" "dm" "jm" "ng" "td"
 "aq" "do" "jo" "ni" "tf"
 "ar" "dz" "jp" "nl" "tg"
 "as" "ec" "ke" "no" "th"
 "at" "ee" "kg" "np" "tj"
 "au" "eg" "kh" "nr" "tk"
 "aw" "er" "ki" "nu" "tl"
 "ax" "es" "km" "nz" "tm"
 "az" "et" "kp" "om" "tn"
 "ba" "eu" "kr" "pa" "to"
 "bb" "fi" "kw" "pe" "tr"
 "bd" "fj" "ky" "pf" "tt"
 "be" "fk" "kz" "pg" "tv"
 "bf" "fm" "la" "ph" "tw"
 "bg" "fo" "lb" "pk" "tz"
 "bh" "fr" "lc" "pl" "ua"
 "bi" "ga" "li" "pm" "ug"
 "bj" "gd" "lk" "pn" "uk"
 "bl" "ge" "lr" "pr" "um"
 "bm" "gf" "ls" "ps" "us"
 "bn" "gg" "lt" "pt" "uy"
 "bo" "gh" "lu" "pw" "uz"
 "br" "gi" "lv" "py" "va"
 "bs" "gl" "ly" "qa" "vc"
 "bt" "gm" "ma" "re" "ve"
 "bv" "gn" "mc" "ro" "vg"
 "bw" "gp" "md" "rs" "vi"
 "by" "gq" "me" "ru" "vn"
 "bz" "gr" "mf" "rw" "vu"
 "ca" "gs" "mg" "sa" "wf"
 "cc" "gt" "mh" "sb" "ws"
 "cd" "gu" "mk" "sc" "ye"
 "cf" "gw" "ml" "sd" "yt"
 "cg" "gy" "mm" "se" "za"
 "ch" "hk" "mn" "sg" "zm"
 "ci" "hm" "mo" "sh" "zw"

 topLevelDomains

1-379

See Also
addPartOfSpeechDetails | addSentenceDetails | addTypeDetails |
tokenDetails | tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2018a

1 Functions — Alphabetical List

1-380

trainWordEmbedding
Train word embedding

Syntax
emb = trainWordEmbedding(filename)
emb = trainWordEmbedding(documents)
emb = trainWordEmbedding(___ ,Name,Value)

Description
emb = trainWordEmbedding(filename) trains a word embedding using the training
data stored in the text file filename. The file is a collection of documents stored in UTF-8
with one document per line and words separated by whitespace.

emb = trainWordEmbedding(documents) trains a word embedding using documents
by creating a temporary file with writeTextDocument, and then trains an embedding
using the temporary file.

emb = trainWordEmbedding(___ ,Name,Value) specifies additional options using
one or more name-value pair arguments. For example, 'Dimension',50 specifies the
word embedding dimension to be 50.

Examples

Train Word Embedding from File

Train a word embedding of dimension 20 using the example text file
exampleSonnetsDocuments.txt. This file contains preprocessed versions of
Shakespeare's sonnets, with one sonnet per line and words separated by a space.

filename = "exampleSonnetsDocuments.txt";
emb = trainWordEmbedding(filename)

 trainWordEmbedding

1-381

Training: 100% Loss: 0 Remaining time: 0 hours 0 minutes.

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1x502 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)

1 Functions — Alphabetical List

1-382

Train Word Embedding from Documents

Train a word embedding using the example data sonnetsPreprocessed.txt. This file
contains preprocessed versions of Shakespeare's sonnets. The file contains one sonnet
per line, with words separated by a space. Extract the text from
sonnetsPreprocessed.txt, split the text into documents at newline characters, and
then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.

emb = trainWordEmbedding(documents)

Training: 100% Loss: 2.7096 Remaining time: 0 hours 0 minutes.

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1x401 string]

Visualize the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb,words);
XY = tsne(V);
textscatter(XY,words)

 trainWordEmbedding

1-383

Specify Word Embedding Options

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

1 Functions — Alphabetical List

1-384

Specify the word embedding dimension to be 50. To reduce the number of words
discarded by the model, set 'MinCount' to 3. To train for longer, set the number of
epochs to 10.

emb = trainWordEmbedding(documents, ...
 'Dimension',50, ...
 'MinCount',3, ...
 'NumEpochs',10)

Training: 100% Loss: 0 Remaining time: 0 hours 0 minutes.

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x750 string]

View the word embedding in a text scatter plot using tsne.

words = emb.Vocabulary;
V = word2vec(emb, words);
XY = tsne(V);
textscatter(XY,words)

 trainWordEmbedding

1-385

Input Arguments
filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

documents — Input documents
tokenizedDocument array

1 Functions — Alphabetical List

1-386

Input documents, specified as a tokenizedDocument array.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Dimension',50 specifies the word embedding dimension to be 50.

Dimension — Dimension of word embedding
100 (default) | positive integer

Dimension of the word embedding, specified as the comma-separated pair consisting of
'Dimension' and a nonnegative integer.
Example: 300

Window — Size of context window
5 (default) | nonnegative integer

Size of the context window, specified as the comma-separated pair consisting of
'Window' and a nonnegative integer.
Example: 10

Model — Model
'skipgram' (default) | 'cbow'

Model, specified as the comma-separated pair consisting of 'Model' and 'skipgram'
(skip gram) or 'cbow' (continuous bag-of-words).
Example: 'cbow'

DiscardFactor — Factor to determine word discard rate
1e-4 (default) | positive scalar

Factor to determine the word discard rate, specified as the comma-separated pair
consisting of 'DiscardFactor' and a positive scalar. The function discards a word from
the input window with probability 1-sqrt(t/f) - t/f where f is the unigram
probability of the word, and t is DiscardFactor. Usually, DiscardFactor is in the
range of 1e-3 through 1e-5.

 trainWordEmbedding

1-387

Example: 0.005

LossFunction — Loss function
'ns' (default) | 'hs' | 'softmax'

Loss function, specified as the comma-separated pair consisting of 'LossFunction' and
'ns' (negative sampling), 'hs' (hierarchical softmax), or 'softmax' (softmax).
Example: 'hs'

NumNegativeSamples — Number of negative samples
5 (default) | positive integer

Number of negative samples for the negative sampling loss function, specified as the
comma-separated pair consisting of 'NumNegativeSamples' and a positive integer. This
option is only valid when LossFunction is 'ns'.
Example: 10

NumEpochs — Number of epochs
5 (default) | positive integer

Number of epochs for training, specified as the comma-separated pair consisting of
'NumEpochs' and a positive integer.
Example: 10

MinCount — Minimum count of words
5 (default) | positive integer

Minimum count of words to include in the embedding, specified as the comma-separated
pair consisting of 'MinCount' and a positive integer. The function discards words that
appear fewer than MinCount times in the training data from the vocabulary.
Example: 10

NGramRange — Inclusive range for subword n-grams
[3 6] (default) | vector of two nonnegative integers

Inclusive range for subword n-grams, specified as the comma-separated pair consisting of
'NGramRange' and a vector of two nonnegative integers [min max]. If you do not want
to use n-grams, then set 'NGramRange' to [0 0].
Example: [5 10]

1 Functions — Alphabetical List

1-388

InitialLearnRate — Initial learn rate
0.05 (default) | positive scalar

Initial learn rate, specified as the comma-separated pair consisting of
'InitialLearnRate' and a positive scalar.
Example: 0.01

UpdateRate — Rate for updating learn rate
100 (default) | positive integer

Rate for updating the learn rate, specified as the comma-separated pair consisting of
'UpdateRate' and a positive integer. The learn rate decreases to zero linearly in steps
every N words where N is the UpdateRate.
Example: 50

Verbose — Verbosity level
1 (default) | 0

Verbosity level, specified as the comma-separated pair consisting of 'Verbose' and one
of the following:

• 0 – Do not display verbose output.
• 1 – Display progress information.

Example: 'Verbose',0

Output Arguments
emb — Output word embedding
word embedding

Output word embedding, returned as a wordEmbedding object.

 trainWordEmbedding

1-389

Definitions

Language Considerations
File input to the trainWordEmbedding function requires words separated by
whitespace.

For files containing non-English text, you might need to input a tokenizedDocument
array to trainWordEmbedding.

To create a tokenizedDocument array from pretokenized text, use the
tokenizedDocument function and set the 'TokenizeMethod' option to 'none'.

Tips
The training algorithm uses the number of threads given by the function
maxNumCompThreads. To learn how to change the number of threads used by MATLAB,
see maxNumCompThreads.

See Also
doc2sequence | fastTextWordEmbedding | readWordEmbedding |
tokenizedDocument | vec2word | word2vec | wordEmbedding |
wordEmbeddingLayer | wordEncoding | writeWordEmbedding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-390

transform
Transform documents into lower-dimensional space

Syntax
dscores = transform(lsaMdl,documents)
dscores = transform(lsaMdl,bag)
dscores = transform(lsaMdl,counts)

dscores = transform(ldaMdl,documents)
dscores = transform(ldaMdl,bag)
dscores = transform(ldaMdl,counts)
dscores = transform(___ ,Name,Value)

Description
dscores = transform(lsaMdl,documents) transforms documents into the semantic
space of the latent semantic analysis (LSA) model lsaMdl.

dscores = transform(lsaMdl,bag) transforms documents represented by the bag-
of-words or bag-of-n-grams model bag into the semantic space of the LSA model lsaMdl.

dscores = transform(lsaMdl,counts) transforms documents represented by the
matrix of word counts into the semantic space of the LSA model lsaMdl.

dscores = transform(ldaMdl,documents) transforms documents into the latent
Dirichlet allocation (LDA) topic probability space of LDA model ldaMdl. The rows of
dscores are the topic mixture representations of the documents.

dscores = transform(ldaMdl,bag) transforms documents represented by the bag-
of-words or bag-of-n-grams model bag into the LDA topic probability space of LDA model
ldaMdl.

dscores = transform(ldaMdl,counts) transforms documents represented by the
matrix of word counts into the LDA topic probability space of LDA model ldaMdl.

 transform

1-391

dscores = transform(___ ,Name,Value) specifies additional options using one or
more name-value pair arguments. These name-value pairs only apply if the input model is
an ldaModel object.

Examples

Transform Documents into LSA Semantic Space

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LSA model with 20 components.

numCompnents = 20;
mdl = fitlsa(bag,numCompnents)

mdl =
 lsaModel with properties:

 NumComponents: 20
 ComponentWeights: [1x20 double]
 DocumentScores: [154x20 double]

1 Functions — Alphabetical List

1-392

 WordScores: [3092x20 double]
 Vocabulary: [1x3092 string]
 FeatureStrengthExponent: 2

Use transform to transform the first 10 documents into the semantic space of the LSA
model.

dscores = transform(mdl,documents(1:10))

dscores = 10×20

 5.6059 -1.8559 0.9286 -0.7086 -0.4652 -0.8340 -0.6751 0.0611 0.2268 1.9320 -0.7289 -1.0864 0.7131 -0.0571 -0.3401 0.0940 -0.4406 1.7507 -1.1534 0.1785
 7.3069 -2.3578 1.8359 -2.3442 -1.5776 -2.0310 -0.7948 1.3411 -1.1700 1.8839 0.0883 0.4734 -1.1244 0.6795 1.3585 -0.0247 0.3627 -0.5414 -0.0272 -0.0114
 7.1056 -2.3508 -2.8837 -1.0688 -0.3462 -0.6962 -0.0334 -0.0472 0.4916 0.6496 -1.1959 -1.0171 -0.4020 1.2953 -0.4583 0.5984 -0.3890 1.1780 0.6413 0.6575
 8.6292 -3.0471 -0.8512 -0.4356 -0.3055 0.4671 1.4219 -0.8454 -0.8270 0.4122 2.2082 -1.1770 1.7775 -2.2344 -2.7813 1.4979 0.7486 -2.0593 0.6376 1.0721
 1.0434 1.7490 0.8703 -2.2315 -1.1221 0.2848 2.0522 -0.6975 1.7191 -0.2852 0.8879 0.9950 -0.5555 0.8842 -0.0360 1.0050 0.4158 0.5061 0.9602 0.4672
 6.8358 -2.0806 -3.3798 -1.0452 -0.2075 2.0970 0.4477 0.2080 0.9532 1.6203 0.6653 0.0036 1.0825 0.6396 -0.2154 -0.0794 0.7108 1.8007 -4.0326 -0.3872
 2.3847 0.3923 -0.4323 -1.5340 0.4023 -1.0396 1.0326 0.3776 0.2101 -1.0944 -0.7513 -0.2894 0.4303 0.1864 0.4922 0.4844 0.5191 -0.2378 0.9528 0.4817
 3.7925 -0.3941 -4.4610 -0.4930 0.4651 0.3404 0.5493 0.1470 0.5065 0.2566 0.3394 -1.1529 -0.0391 -0.8800 -0.4712 0.9672 0.5457 -0.3639 -0.3085 0.5637
 4.6522 0.7188 -1.1787 -0.8996 0.3360 0.4531 0.1935 0.3328 -0.8640 -1.6679 -0.8056 -2.1993 0.1808 0.0163 -0.9520 -0.8982 0.6603 3.6451 1.2412 1.9621
 8.8218 -0.8168 -2.5101 1.1197 -0.8673 -1.2336 -0.0768 0.1943 -0.7629 -0.1222 0.3786 1.1611 0.2326 0.3415 -0.3327 -0.3792 1.7554 0.2526 -2.1574 -0.0193

Transform Documents into LDA Topic Mixtures

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

 transform

1-393

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with five topics.

numTopics = 5;
mdl = fitlda(bag,numTopics)

Initial topic assignments sampled in 0.0415024 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.01		1.212e+03	1.250	0
1	0.03	1.2300e-02	1.112e+03	1.250	0
2	0.02	1.3254e-03	1.102e+03	1.250	0
3	0.02	2.9402e-05	1.102e+03	1.250	0
===

mdl =
 ldaModel with properties:

 NumTopics: 5
 WordConcentration: 1
 TopicConcentration: 1.2500
 CorpusTopicProbabilities: [0.2000 0.2000 0.2000 0.2000 0.2000]
 DocumentTopicProbabilities: [154x5 double]
 TopicWordProbabilities: [3092x5 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Use transform to transform the documents into a vector of topic probabilities. You can
visualize these mixtures using stacked bar charts. View the topic mixtures of the first 10
documents.

topicMixtures = transform(mdl,documents(1:10));
figure

1 Functions — Alphabetical List

1-394

barh(topicMixtures,'stacked')
xlim([0 1])
title("Topic Mixtures")
xlabel("Topic Probability")
ylabel("Document")
legend("Topic " + string(1:numTopics),'Location','northeastoutside')

Transform Word Count Matrix into LDA Topic Mixtures

Load the example data. sonnetsCounts.mat contains a matrix of word counts and a
corresponding vocabulary of preprocessed versions of Shakespeare's sonnets.

 transform

1-395

load sonnetsCounts.mat
size(counts)

ans = 1×2

 154 3092

Fit an LDA model with 20 topics. To reproduce the results in this example, set rng to
'default'.

rng('default')
numTopics = 20;
mdl = fitlda(counts,numTopics)

Initial topic assignments sampled in 0.0597549 seconds.
===
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
===					
0	0.02		1.159e+03	5.000	0
1	0.07	5.4884e-02	8.028e+02	5.000	0
2	0.07	4.7400e-03	7.778e+02	5.000	0
3	0.06	3.4597e-03	7.602e+02	5.000	0
4	0.07	3.4662e-03	7.430e+02	5.000	0
5	0.06	2.9259e-03	7.288e+02	5.000	0
6	0.06	6.4180e-05	7.291e+02	5.000	0
===

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [1x20 double]
 DocumentTopicProbabilities: [154x20 double]
 TopicWordProbabilities: [3092x20 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Use transform to transform the documents into a vector of topic probabilities.

1 Functions — Alphabetical List

1-396

topicMixtures = transform(mdl,counts(1:10,:))

topicMixtures = 10×20

 0.0167 0.0035 0.1645 0.0977 0.0433 0.0833 0.0987 0.0033 0.0299 0.0234 0.0033 0.0345 0.0235 0.0958 0.0667 0.0167 0.0300 0.0519 0.0833 0.0300
 0.0711 0.0544 0.0116 0.0044 0.0033 0.0033 0.0431 0.0053 0.0145 0.0421 0.0971 0.0033 0.0040 0.1632 0.1784 0.0937 0.0683 0.0398 0.0954 0.0037
 0.0293 0.0482 0.1078 0.0322 0.0036 0.0036 0.0464 0.0036 0.0064 0.0612 0.0036 0.0176 0.0036 0.0464 0.0906 0.1169 0.0888 0.1115 0.1180 0.0607
 0.0055 0.0962 0.2403 0.0033 0.0296 0.1613 0.0164 0.0955 0.0163 0.0045 0.0172 0.0033 0.0415 0.0404 0.0342 0.0176 0.0417 0.0642 0.0033 0.0676
 0.0341 0.0224 0.0341 0.0645 0.0948 0.0038 0.0189 0.1099 0.0187 0.0560 0.1045 0.0356 0.0668 0.1196 0.0038 0.0931 0.0493 0.0038 0.0038 0.0626
 0.0445 0.0035 0.1167 0.0034 0.0446 0.0583 0.1268 0.0169 0.0034 0.1135 0.0034 0.0034 0.0047 0.0993 0.0909 0.0582 0.0308 0.0887 0.0856 0.0034
 0.1720 0.0764 0.0090 0.0180 0.0325 0.1213 0.0036 0.0036 0.0505 0.0472 0.0348 0.0477 0.0039 0.0038 0.0122 0.0041 0.0036 0.1605 0.1487 0.0465
 0.0043 0.0033 0.1248 0.0033 0.0299 0.0033 0.0690 0.1699 0.0695 0.0982 0.0033 0.0039 0.0620 0.0833 0.0040 0.0700 0.0033 0.1479 0.0033 0.0433
 0.0412 0.0387 0.0555 0.0165 0.0166 0.0433 0.0033 0.0038 0.0048 0.0033 0.0473 0.0474 0.1290 0.1107 0.0089 0.0112 0.0167 0.1555 0.2423 0.0040
 0.0362 0.0035 0.1117 0.0304 0.0034 0.1248 0.0439 0.0340 0.0168 0.0714 0.0034 0.0214 0.0056 0.0449 0.1438 0.0036 0.0290 0.1437 0.0980 0.0304

Input Arguments
lsaMdl — Input LSA model
lsaModel object

Input LSA model, specified as an lsaModel object.

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

documents — Input documents
tokenizedDocument array | string array of words | cell array of character vectors

Input documents, specified as a tokenizedDocument array, a string array of words, or a
cell array of character vectors. If documents is a tokenizedDocument, then it must be
a column vector. If documents is a string array or a cell array of character vectors, then
it must be a row of the words of a single document.

Tip To ensure that the function does not discard useful information, you must first
preprocess the input documents using the same steps used to preprocess the documents
used to train the model.

 transform

1-397

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

counts — Frequency counts of words
matrix of nonnegative integers

Frequency counts of words, specified as a matrix of nonnegative integers. If you specify
'DocumentsIn' to be 'rows', then the value counts(i,j) corresponds to the number
of times the jth word of the vocabulary appears in the ith document. Otherwise, the value
counts(i,j) corresponds to the number of times the ith word of the vocabulary appears
in the jth document.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IterationLimit',200 sets the iteration limit to 200.

Note These name-value pairs only apply if the input model is an ldaModel object.

DocumentsIn — Orientation of documents
'rows' (default) | 'columns'

Orientation of documents in the word count matrix, specified as the comma-separated
pair consisting of 'DocumentsIn' and one of the following:

• 'rows' – Input is a matrix of word counts with rows corresponding to documents.
• 'columns' – Input is a transposed matrix of word counts with columns corresponding

to documents.

This option only applies if you specify the input documents as a matrix of word counts.

1 Functions — Alphabetical List

1-398

Note If you orient your word count matrix so that documents correspond to columns and
specify 'DocumentsIn','columns', then you might experience a significant reduction
in optimization-execution time.

IterationLimit — Maximum number of iterations
100 (default) | positive integer

Maximum number of iterations, specified as the comma-separated pair consisting of
'IterationLimit' and a positive integer.
Example: 'IterationLimit',200

LogLikelihoodTolerance — Relative tolerance on log-likelihood
0.0001 (default) | positive scalar

Relative tolerance on log-likelihood, specified as the comma-separated pair consisting of
'LogLikelihoodTolerance' and a positive scalar. The optimization terminates when
this tolerance is reached.
Example: 'LogLikelihoodTolerance',0.001

Output Arguments
dscores — Output document scores
matrix

Output document scores, returned as a matrix of score vectors.

See Also
bagOfWords | fitlda | fitlsa | ldaModel | logp | lsaModel | predict | wordcloud

Topics
“Analyze Text Data Using Topic Models”
“Prepare Text Data for Analysis”
“Extract Text Data from Files”

Introduced in R2017b

 transform

1-399

upper
Convert documents to uppercase

Syntax
newDocuments = upper(documents)

Description
newDocuments = upper(documents) converts each lowercase character in the input
documents to the corresponding uppercase character, and leaves all other characters
unchanged.

Examples

Convert Documents to Uppercase

Convert all lowercase characters in an array of documents to uppercase.

documents = tokenizedDocument([
 "An Example of a Short Sentence"
 "A Second Short Sentence"])

documents =
 2x1 tokenizedDocument:

 6 tokens: An Example of a Short Sentence
 4 tokens: A Second Short Sentence

newDocuments = upper(documents)

newDocuments =
 2x1 tokenizedDocument:

1 Functions — Alphabetical List

1-400

 6 tokens: AN EXAMPLE OF A SHORT SENTENCE
 4 tokens: A SECOND SHORT SENTENCE

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Output Arguments
newDocuments — Output documents
tokenizedDocument array

Output documents, returned as a tokenizedDocument array.

See Also
decodeHTMLEntities | erasePunctuation | eraseTags | eraseURLs | lower |
tokenizedDocument

Topics
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 upper

1-401

vec2word
Map embedding vector to word

Syntax
words = vec2word(emb,M)
[words,dist] = vec2word(emb,M)
___ = vec2word(emb,M,k)
___ = vec2word(___ ,'Distance',distance)

Description
words = vec2word(emb,M) returns the closest words to the embedding vectors in the
rows of M.

[words,dist] = vec2word(emb,M) returns the closest words to the embedding
vectors in M, and returns the distances dist of each to their source vectors.

___ = vec2word(emb,M,k) returns the top k closest words.

___ = vec2word(___ ,'Distance',distance) specifies the distance metric.

Examples

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding

emb =
 wordEmbedding with properties:

1 Functions — Alphabetical List

1-402

 Dimension: 300
 Vocabulary: [1×1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word =
"France"

Find Closest Words to Vector

Find the top five closest words to a word embedding vector and their distances.

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding;

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word. Find the top five
closest words using the Euclidean distance metric.

k = 5;
M = italy - rome + paris;
[words,dist] = vec2word(emb,M,k,'Distance','euclidean');

Plot the words and distances in a bar chart.

 vec2word

1-403

figure;
bar(dist)
xticklabels(words)
xlabel("Word")
ylabel("Distance")
title("Distances to Vector")

Input Arguments
emb — Input word embedding
wordEmbedding object

1 Functions — Alphabetical List

1-404

Input word embedding, specified as a wordEmbedding object.

M — Word embedding vectors
matrix

Word embedding vectors, specified as a matrix. Each row of M is a word embedding
vector. M must have emb.Dimension columns.

distance — Distance metric
'cosine' (default) | 'euclidean'

Distance metric, specified as 'cosine' or 'euclidean'.

Output Arguments
words — Output words
string vector

Output words, returned as a string vector.

dist — Distance of words to source vectors
vector

Distance of words to their source vectors, returned as a vector.

See Also
doc2sequence | fastTextWordEmbedding | ind2word | isVocabularyWord |
tokenizedDocument | word2ind | word2vec | wordEmbedding |
wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

 vec2word

1-405

word2ind
Map word to encoding index

Syntax
M = word2ind(enc,words)

Description
M = word2ind(enc,words) returns the indices of words in the encoding enc.

Examples

Map Words to Encoding Indices

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans =
 10x1 tokenizedDocument:

 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir

1 Functions — Alphabetical List

1-406

 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

enc =
 wordEncoding with properties:

 NumWords: 3092
 Vocabulary: [1x3092 string]

Map the words "rose", "love", and "beauty" to encoding indices using the word2ind
function.

words = ["rose" "love" "beauty"];
idx = word2ind(enc,words)

idx = 1×3

 7 387 79

Input Arguments
enc — Input word encoding
wordEncoding object

Input word encoding, specified as a wordEncoding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

 word2ind

1-407

Output Arguments
M — Vector of word encoding indices
vector of positive integers

Vector of word encoding indices.

See Also
fastTextWordEmbedding | ind2word | isVocabularyWord | tokenizedDocument |
word2vec | wordEmbedding | wordEmbeddingLayer | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b

1 Functions — Alphabetical List

1-408

word2vec
Map word to embedding vector

Syntax
M = word2vec(emb,words)

Description
M = word2vec(emb,words) returns the embedding vectors of words in the embedding
emb. If a word is not in the embedding vocabulary, then the function returns a row of
NaNs.

Examples

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding

emb =
 wordEmbedding with properties:

 Dimension: 300
 Vocabulary: [1×1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

 word2vec

1-409

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word =
"France"

Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

words — Input words
string vector | character vector | cell array of character vectors

Input words, specified as a string vector, character vector, or cell array of character
vectors. If you specify words as a character vector, then the function treats the argument
as a single word.
Data Types: string | char | cell

Output Arguments
M — Matrix of word embedding vectors
matrix

Matrix of word embedding vectors.

See Also
doc2sequence | fastTextWordEmbedding | isVocabularyWord |
tokenizedDocument | vec2word | word2ind | wordEmbedding | wordEncoding

1 Functions — Alphabetical List

1-410

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

 word2vec

1-411

wordcloud
Create word cloud chart from text, bag-of-words model, bag-of-n-grams model, or LDA
model

Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It
adds support for creating word clouds directly from string arrays, and creating word
clouds from bag-of-words models, bag-of-n-gram models, and LDA topics. If you do not
have Text Analytics Toolbox installed, see wordcloud (MATLAB).

Syntax
wc = wordcloud(str)
wc = wordcloud(documents)
wc = wordcloud(bag)

wc = wordcloud(tbl,wordVar,sizeVar)
wc = wordcloud(words,sizeData)
wc = wordcloud(C)

wc = wordcloud(ldaMdl,topicIdx)

wc = wordcloud(parent, ___)

wc = wordcloud(___ ,Name,Value)

Description
wc = wordcloud(str) creates a word cloud chart by tokenizing and preprocessing the
text in str, and then displaying the words with sizes corresponding to the word
frequency counts.

wc = wordcloud(documents) creates a word cloud chart from the words appearing in
documents.

wc = wordcloud(bag) creates a word cloud chart from the bag-of-words or bag-of-n-
grams model bag.

1 Functions — Alphabetical List

1-412

wc = wordcloud(tbl,wordVar,sizeVar) creates a word cloud chart from the table
tbl. The variables wordVar and sizeVar in the table specify the words and word sizes
respectively.

wc = wordcloud(words,sizeData) creates a word cloud chart from elements of
words with word sizes specified by sizeData.

wc = wordcloud(C) creates a word cloud chart from the elements of categorical array
C using frequency counts.

wc = wordcloud(ldaMdl,topicIdx) creates a word cloud chart from the topic with
index topicIdx of the LDA model ldaMdl.

wc = wordcloud(parent, ___) creates the word cloud in the figure, panel, or tab
specified by parent.

wc = wordcloud(___ ,Name,Value) specifies additional WordCloudChart properties
using one or more name-value pair arguments.

Examples

Create Word Cloud from Text Data

Extract the text from sonnets.txt using extractFileText and display the text of the
first sonnet.

str = extractFileText("sonnets.txt");
extractBefore(str,"II")

ans =
 "THE SONNETS

 by William Shakespeare

 I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,

 wordcloud

1-413

 But as the riper should by time decease,
 His tender heir might bear his memory:
 But thou, contracted to thine own bright eyes,
 Feed'st thy light's flame with self-substantial fuel,
 Making a famine where abundance lies,
 Thy self thy foe, to thy sweet self too cruel:
 Thou that art now the world's fresh ornament,
 And only herald to the gaudy spring,
 Within thine own bud buriest thy content,
 And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

 "

Display the words from the sonnets in a word cloud.

figure
wordcloud(str);

1 Functions — Alphabetical List

1-414

Create Word Cloud from Tokenized Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

 wordcloud

1-415

Visualize the documents using a word cloud.

figure
wordcloud(documents);

Create Word Cloud from Bag-of-Words Model

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

1 Functions — Alphabetical List

1-416

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Visualize the bag-of-words model using a word cloud.

figure
wordcloud(bag);

 wordcloud

1-417

Create Word Cloud from Table

Load the example data sonnetsTable. The table tbl contains a list of words in the
variable Word, and the corresponding frequency counts in the variable Count.

load sonnetsTable
head(tbl)

ans=8×2 table
 Word Count
 _________ _____

1 Functions — Alphabetical List

1-418

 '''tis' 1
 ''Amen'' 1
 ''Fair' 2
 ''Gainst' 1
 ''Since' 1
 ''This' 2
 ''Thou' 1
 ''Thus' 1

Plot the table data using wordcloud. Specify the words and corresponding word sizes to
be the Word and Count variables respectively.

figure
wordcloud(tbl,'Word','Count');
title("Sonnets Word Cloud")

 wordcloud

1-419

Create Word Cloud from LDA Topic

To reproduce the results in this example, set rng to 'default'.

rng('default')

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

1 Functions — Alphabetical List

1-420

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Create a bag-of-words model using bagOfWords.

bag = bagOfWords(documents)

bag =
 bagOfWords with properties:

 Counts: [154x3092 double]
 Vocabulary: [1x3092 string]
 NumWords: 3092
 NumDocuments: 154

Fit an LDA model with 20 topics. To suppress verbose output, set 'Verbose' to 0.

mdl = fitlda(bag,20,'Verbose',0)

mdl =
 ldaModel with properties:

 NumTopics: 20
 WordConcentration: 1
 TopicConcentration: 5
 CorpusTopicProbabilities: [1x20 double]
 DocumentTopicProbabilities: [154x20 double]
 TopicWordProbabilities: [3092x20 double]
 Vocabulary: [1x3092 string]
 TopicOrder: 'initial-fit-probability'
 FitInfo: [1x1 struct]

Visualize the first four topics using word clouds.

figure
for topicIdx = 1:4
 subplot(2,2,topicIdx)
 wordcloud(mdl,topicIdx);
 title("Topic: " + topicIdx)
end

 wordcloud

1-421

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short
sentence."]

Data Types: string | char | cell

1 Functions — Alphabetical List

1-422

documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

tbl — Input table
table

Input table, with columns specifying the words and word sizes. Specify the words and the
corresponding word sizes in the variables given by wordVar and sizeVar input
arguments respectively.
Data Types: table

wordVar — Table variable for word data
string scalar | character vector | numeric index | logical vector

Table variable for word data, specified as a string scalar, character vector, numeric index,
or a logical vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

sizeVar — Table variable for size data
string scalar | character vector | numeric index | logical vector

Table variable for size data, specified as a string scalar, character vector, numeric index,
or a logical vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64 | logical | char | string

words — Input words
string vector | cell array of character vectors

Input words, specified as a string vector or cell array of character vectors.
Data Types: string | cell

sizeData — Word size data
numeric vector

Word size data, specified as a numeric vector.

 wordcloud

1-423

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

C — Input categorical data
categorical array

Input categorical data, specified as a categorical array. The function plots each unique
element of C with size corresponding to histcounts(C).
Data Types: categorical

bag — Input model
bagOfWords object | bagOfNgrams object

Input bag-of-words or bag-of-n-grams model, specified as a bagOfWords object or a
bagOfNgrams object. If bag is a bagOfNgrams object, then the function treats the n-
grams as individual words.

ldaMdl — Input LDA model
ldaModel object

Input LDA model, specified as an ldaModel object.

topicIdx — Index of LDA topic
nonnegative integer

Index of LDA topic, specified as a nonnegative integer.

parent — Parent
figure | panel | tab

Parent specified as a figure, panel, or tab.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'HighlightColor','blue' specifies the highlight color to be blue.

1 Functions — Alphabetical List

1-424

The WordCloudChart properties listed here are only a subset. For a complete list, see
WordCloudChart Properties.

MaxDisplayWords — Maximum number of words to display
100 (default) | nonnegative integer

Maximum number of words to display, specified as a non-negative integer. The software
displays the MaxDisplayWords largest words.

Color — Word color
[0.2510 0.2510 0.2510] (default) | RGB triplet | character vector containing a color
name | matrix

Word color, specified as an RGB triplet, a character vector containing a color name, or an
N-by-3 matrix where N is the length of WordData. If Color is a matrix, then each row
corresponds to an RGB triplet for the corresponding word in WordData.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Example: 'blue'
Example: [0 0 1]

 wordcloud

1-425

HighlightColor — Word highlight color
[0.8510 0.3255 0.0980] (default) | RGB triplet | character vector containing a color
name

Word highlight color, specified as an RGB triplet, or a character vector containing a color
name. The software highlights the largest words with this color.

An RGB triplet is a three-element row vector whose elements specify the intensities of the
red, green, and blue components of the color. The intensities must be in the range [0,1];
for example, [0.4 0.6 0.7]. Alternatively, you can specify some common colors by
name. This table lists the long and short color name options and the equivalent RGB
triplet values.

Option Description Equivalent RGB Triplet
'red' or 'r' Red [1 0 0]
'green' or 'g' Green [0 1 0]
'blue' or 'b' Blue [0 0 1]
'yellow' or 'y' Yellow [1 1 0]
'magenta' or 'm' Magenta [1 0 1]
'cyan' or 'c' Cyan [0 1 1]
'white' or 'w' White [1 1 1]
'black' or 'k' Black [0 0 0]

Example: 'blue'
Example: [0 0 1]

Shape — Shape of word cloud
'oval' (default) | 'rectangle'

Shape of word cloud chart, specified as 'oval' or 'rectangle'.
Example: 'rectangle'

Output Arguments
wc — WordCloudChart object
WordCloudChart object

1 Functions — Alphabetical List

1-426

WordCloudChart object. You can modify the properties of a WordCloudChart after it is
created. For more information, see WordCloudChart Properties.

Definitions

Language Considerations
For string input, the wordcloud function uses English and Japanese tokenization, stop
word removal, and word normalization.

For other languages, you might need to manually preprocess your text data and specify
unique words and corresponding sizes in wordcloud.

To specify word sizes in wordcloud, input your data as a table or arrays containing the
unique words and corresponding sizes.

See Also
bagOfNgrams | bagOfWords | textscatter | textscatter3 | tokenizedDocument |
wordCloudCounts

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

 wordcloud

1-427

wordCloudCounts
Count words for word cloud creation

Syntax
T = wordCloudCounts(str)

Description
T = wordCloudCounts(str) tokenizes and preprocesses the text in str for word cloud
creation and returns a table T of words and frequency counts.

Examples

Word Cloud Frequency Counts

Extract the text from sonnets.txt using extractFileText.

str = extractFileText("sonnets.txt");

View the first sonnet.

i = strfind(str,"I");
ii = strfind(str,"II");
start = i(1);
fin = ii(1);
extractBetween(str,start,fin-1)

ans =
 "I

 From fairest creatures we desire increase,
 That thereby beauty's rose might never die,
 But as the riper should by time decease,
 His tender heir might bear his memory:

1 Functions — Alphabetical List

1-428

 But thou, contracted to thine own bright eyes,
 Feed'st thy light's flame with self-substantial fuel,
 Making a famine where abundance lies,
 Thy self thy foe, to thy sweet self too cruel:
 Thou that art now the world's fresh ornament,
 And only herald to the gaudy spring,
 Within thine own bud buriest thy content,
 And tender churl mak'st waste in niggarding:
 Pity the world, or else this glutton be,
 To eat the world's due, by the grave and thee.

 "

Tokenize and preprocess the sonnets text and create a table of word frequency counts.

T = wordCloudCounts(str);
head(T)

ans=8×2 table
 Word Count
 ______ _____

 "thy" 281
 "thou" 235
 "love" 188
 "thee" 162
 "eyes" 90
 "doth" 88
 "make" 63
 "mine" 63

Input Arguments
str — Input text
string array | character vector | cell array of character vectors

Input text, specified as a string array, character vector, or cell array of character vectors.
Example: ["An example of a short sentence."; "A second short
sentence."]

 wordCloudCounts

1-429

Data Types: string | char | cell

Output Arguments
T — Table of word counts
table

Table of words counts sorted in order of importance. The table has columns:

Word String scalar of the word.
Count The number of times the word appears in the documents. The

function groups the counts of words that differ only by case or have
a common stem according to normalizeWords. For example, the
function groups the counts for "walk", "Walking", "walking", and
"walks".

See Also
bagOfNgrams | bagOfWords | textscatter | textscatter3 | tokenizedDocument |
wordcloud

Topics
“Visualize Text Data Using Word Clouds”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-430

wordEmbedding
Word embedding model to map words to vectors and back

Description
A word embedding, popularized by the word2vec, GloVe, and fastText libraries, maps
words in a vocabulary to real vectors.

The vectors attempt to capture the semantics of the words, so that similar words have
similar vectors. Some embeddings also capture relationships between words, such as
"king is to queen as man is to woman". In vector form, this relationship is king – man +
woman = queen.

Creation
Create a word embedding by loading a pretrained embedding using
fastTextWordEmbedding, reading an embedding from a file using
readWordEmbedding, or by training an embedding using trainWordEmbedding.

Properties
Dimension — Dimension of word embedding
positive integer

Dimension of the word embedding, specified as a positive integer.
Example: 300

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

 wordEmbedding

1-431

Object Functions
vec2word Map embedding vector to word
word2vec Map word to embedding vector
isVocabularyWord Test if word is member of word embedding or encoding
writeWordEmbedding Write word embedding file

Examples

Download fastText Support Package

Download and install the Text Analytics Toolbox Model for fastText English 16 Billion
Token Word Embedding support package.

Type fastTextWordEmbedding at the command line.

fastTextWordEmbedding

If the Text Analytics Toolbox Model for fastText English 16 Billion Token Word Embedding
support package is not installed, then the function provides a link to the required support
package in the Add-On Explorer. To install the support package, click the link, and then
click Install. Check that the installation is successful by typing emb =
fastTextWordEmbedding at the command line.

emb = fastTextWordEmbedding

emb =

 wordEmbedding with properties:

 Dimension: 300
 Vocabulary: [1×1000000 string]

If the required support package is installed, then the function returns a wordEmbedding
object.

Map Words to Vectors and Back

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word

1 Functions — Alphabetical List

1-432

Embedding support package. If this support package is not installed, then the function
provides a download link.

emb = fastTextWordEmbedding

emb =
 wordEmbedding with properties:

 Dimension: 300
 Vocabulary: [1×1000000 string]

Map the words "Italy", "Rome", and "Paris" to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb,"Rome");
paris = word2vec(emb,"Paris");

Map the vector italy - rome + paris to a word using vec2word.

word = vec2word(emb,italy - rome + paris)

word =
"France"

Convert Documents to Sequences of Word Vectors

Convert an array of tokenized documents to sequences of word vectors using a pretrained
word embedding.

Load a pretrained word embedding using the fastTextWordEmbedding function. This
function requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token
Word Embedding support package. If this support package is not installed, then the
function provides a download link.

emb = fastTextWordEmbedding;

Load the weather reports data and create a tokenizedDocument array.

filename = "weatherReports.csv";
data = readtable(filename,'TextType','string');
textData = data.event_narrative;
documents = tokenizedDocument(textData);

 wordEmbedding

1-433

Convert the documents to sequences of word vectors using doc2sequence. The
doc2sequence function, by default, left-pads the sequences to have the same length.
When converting large collections of documents using a high-dimensional word
embedding, padding can require large amounts of memory. To prevent the function from
padding the data, set the 'PaddingDirection' option to 'none'. Alternatively, you can
control the amount of padding using the 'Length' option.

sequences = doc2sequence(emb,documents,'PaddingDirection','none');

View the sizes of the first 10 sequences. Each sequence is D-by-S matrix, where D is the
embedding dimension, and S is the number of word vectors in the sequence.

sequences(1:10)

ans = 10×1 cell array
 {300×8 single}
 {300×39 single}
 {300×14 single}
 {300×14 single}
 {300×0 single}
 {300×15 single}
 {300×20 single}
 {300×6 single}
 {300×21 single}
 {300×10 single}

Read Word Embedding from Text File

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 50
 Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word.

1 Functions — Alphabetical List

1-434

king = word2vec(emb,"king");
man = word2vec(emb,"man");
woman = word2vec(emb,"woman");
word = vec2word(emb,king - man + woman)

word =
"queen"

Write Word Embedding to File

Train a word embedding and write it to a text file.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.

emb = trainWordEmbedding(documents)

Training: 100% Loss: 0 Remaining time: 0 hours 0 minutes.

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1x401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb,filename)

Read the word embedding file using readWordEmbedding.

emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 wordEmbedding

1-435

 Dimension: 100
 Vocabulary: [1x401 string]

See Also
doc2sequence | fastTextWordEmbedding | tokenizedDocument |
trainWordEmbedding | vec2word | word2vec | wordEmbeddingLayer |
wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-436

wordEmbeddingLayer
Word embedding layer for deep learning networks

Description
A word embedding layer maps word indices to vectors.

Use a word embedding layer in a deep learning long short-term memory (LSTM) network.
An LSTM network is a type of recurrent neural network (RNN) that can learn long-term
dependencies between time steps of sequence data. A word embedding layer maps a
sequence of word indices to embedding vectors and learns the word embedding during
training.

Creation

Syntax
layer = wordEmbeddingLayer(dimension,numWords)
layer = wordEmbeddingLayer(dimension,numWords,Name,Value)

Description
layer = wordEmbeddingLayer(dimension,numWords) creates a word embedding
layer and specifies the embedding dimension and vocabulary size.

layer = wordEmbeddingLayer(dimension,numWords,Name,Value) sets optional
properties on page 1-437 using one or more name-value pairs. Enclose each property
name in single quotes.

Properties
Dimension — Dimension of word embedding
positive integer

 wordEmbeddingLayer

1-437

Dimension of the word embedding, specified as a positive integer.
Example: 300

NumWords — Number of words in model
positive integer

Number of words in the model, specified as a positive integer. If the number of unique
words in the training data is greater than NumWords, then the layer maps the out-of-
vocabulary words to the same vector.

Name — Layer name
'' (default) | character vector

Layer name, specified as a character vector. If Name is set to '', then the software
automatically assigns a name at training time.
Data Types: char

WeightLearnRateFactor — Learning rate factor for weights
1 (default) | nonnegative scalar

Learning rate factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global learning rate to determine the learning
rate for the weights in this layer. For example, if WeightLearnRateFactor is 2, then the
learning rate for the weights in this layer is twice the current global learning rate. The
software determines the global learning rate based on the settings specified with the
trainingOptions function.
Example: 2

WeightL2Factor — L2 regularization factor for weights
1 (default) | nonnegative scalar

L2 regularization factor for the weights, specified as a nonnegative scalar.

The software multiplies this factor by the global L2 regularization factor to determine the
learning rate for the weights in this layer. For example, if WeightL2Factor is 2, then the
L2 regularization for the weights in this layer is twice the global L2 regularization factor.
You can specify the global L2 regularization factor using the trainingOptions function.
Example: 2

1 Functions — Alphabetical List

1-438

Examples

Create Word Embedding Layer

Create a word embedding layer with embedding dimension 300 and 5000 words.

layer = wordEmbeddingLayer(300,5000)

layer =
 WordEmbeddingLayer with properties:

 Name: ''

 Hyperparameters
 Dimension: 300
 NumWords: 5000

 Learnable Parameters
 Weights: []

 Show all properties

Include a word embedding layer in an LSTM network.

inputSize = 1;
embeddingDimension = 300;
numWords = 5000;
numHiddenUnits = 200;
numClasses = 10;

layers = [
 sequenceInputLayer(inputSize)
 wordEmbeddingLayer(embeddingDimension,numWords)
 lstmLayer(numHiddenUnits,'OutputMode','last')
 fullyConnectedLayer(numClasses)
 softmaxLayer
 classificationLayer]

layers =
 6x1 Layer array with layers:

 1 '' Sequence Input Sequence input with 1 dimensions

 wordEmbeddingLayer

1-439

 2 '' Word Embedding Layer Word embedding layer with 300 dimensions and 5000 unique words
 3 '' LSTM LSTM with 200 hidden units
 4 '' Fully Connected 10 fully connected layer
 5 '' Softmax softmax
 6 '' Classification Output crossentropyex

See Also
doc2sequence | fastTextWordEmbedding | lstmLayer | sequenceInputLayer |
tokenizedDocument | trainNetwork | trainWordEmbedding | wordEncoding

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”
“Deep Learning in MATLAB” (Deep Learning Toolbox)
“List of Deep Learning Layers” (Deep Learning Toolbox)

Introduced in R2018b

1 Functions — Alphabetical List

1-440

wordEncoding
Word encoding model to map words to indices and back

Description
A word encoding maps words in a vocabulary to numeric indices.

To encode documents as matrices of word or n-gram counts, use encode.

Creation

Syntax
enc = wordEncoding(documents)
enc = wordEncoding(documents,Name,Value)

Description
enc = wordEncoding(documents) creates a word encoding from the words in
documents.

enc = wordEncoding(documents,Name,Value) specifies additional options using
one or more name-value pair arguments. For example, 'Order','frequency' assigns
lower indices to more frequent words.

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 wordEncoding

1-441

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Order','frequency' sorts the indices by the total frequency in the
documents in descending order.

Order — Sorting of indices
'first-seen' (default) | 'frequency'

Sorting of indices, specified as the comma-separated pair consisting of 'Order' and one
of the following:

• 'first-seen' – Assign indices to the words in the order in which they occur in the
documents.

• 'frequency' – Assign indices to the words sorted by total frequency in the
documents in descending order.

If 'Order' is 'frequency' and multiple words have the same frequency, then the
function does not assign indices in any particular order.

MaxNumWords — Maximum number of words to encode
inf (default) | positive integer

Maximum number of words to encode, specified as a positive integer or inf. The function
first sorts the indices according to the 'Order' option and then encodes the top
MaxNumWords words. If MaxNumWords is inf, then the function encodes all the words in
the input documents.

Properties
NumWords — Number of words in model
nonnegative integer

Number of words in the model, specified as a nonnegative integer.

Vocabulary — Unique words in model
string vector

Unique words in the model, specified as a string vector.
Data Types: string

1 Functions — Alphabetical List

1-442

Object Functions
ind2word Map encoding index to word
word2ind Map word to encoding index
isVocabularyWord Test if word is member of word embedding or encoding

Examples

Create Word Encoding

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans =
 10x1 tokenizedDocument:

 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

enc =
 wordEncoding with properties:

 wordEncoding

1-443

 NumWords: 3092
 Vocabulary: [1x3092 string]

Create Word Encoding of Top Words in Documents

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans =
 10x1 tokenizedDocument:

 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding. Sort the indices by frequency and encode only the top 100
words.

enc = wordEncoding(documents, ...
 'Order','frequency', ...
 'MaxNumWords',100)

enc =
 wordEncoding with properties:

1 Functions — Alphabetical List

1-444

 NumWords: 100
 Vocabulary: [1x100 string]

View the words corresponding to indices 1, 2, and 3 using the ind2word function.

idx = [1 2 3];
words = ind2word(enc,idx)

words = 1x3 string array
 "thy" "thou" "love"

Map Encoding Indices to Words

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans =
 10x1 tokenizedDocument:

 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

enc = wordEncoding(documents)

 wordEncoding

1-445

enc =
 wordEncoding with properties:

 NumWords: 3092
 Vocabulary: [1x3092 string]

View the words corresponding to indices 1, 3, and 5 using the ind2word function.

idx = [1 3 5];
words = ind2word(enc,idx)

words = 1x3 string array
 "fairest" "desire" "thereby"

Map Words to Encoding Indices

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);
documents(1:10)

ans =
 10x1 tokenizedDocument:

 70 tokens: fairest creatures desire increase thereby beautys rose might never die riper time decease tender heir might bear memory thou contracted thine own bright eyes feedst thy lights flame selfsubstantial fuel making famine abundance lies thy self thy foe thy sweet self cruel thou art worlds fresh ornament herald gaudy spring thine own bud buriest thy content tender churl makst waste niggarding pity world else glutton eat worlds due grave thee
 71 tokens: forty winters shall besiege thy brow dig deep trenches thy beautys field thy youths proud livery gazed tatterd weed small worth held asked thy beauty lies treasure thy lusty days say thine own deep sunken eyes alleating shame thriftless praise praise deservd thy beautys thou couldst answer fair child mine shall sum count make old excuse proving beauty succession thine new made thou art old thy blood warm thou feelst cold
 65 tokens: look thy glass tell face thou viewest time face form another whose fresh repair thou renewest thou dost beguile world unbless mother fair whose uneard womb disdains tillage thy husbandry fond tomb selflove stop posterity thou art thy mothers glass thee calls back lovely april prime thou windows thine age shalt despite wrinkles thy golden time thou live rememberd die single thine image dies thee
 71 tokens: unthrifty loveliness why dost thou spend upon thy self thy beautys legacy natures bequest gives nothing doth lend frank lends free beauteous niggard why dost thou abuse bounteous largess thee give profitless usurer why dost thou great sum sums yet canst live traffic thy self alone thou thy self thy sweet self dost deceive nature calls thee gone acceptable audit canst thou leave thy unused beauty tombed thee lives th executor
 61 tokens: hours gentle work frame lovely gaze every eye doth dwell play tyrants same unfair fairly doth excel neverresting time leads summer hideous winter confounds sap checked frost lusty leaves quite gone beauty oersnowed bareness every summers distillation left liquid prisoner pent walls glass beautys effect beauty bereft nor nor remembrance flowers distilld though winter meet leese show substance still lives sweet
 68 tokens: let winters ragged hand deface thee thy summer ere thou distilld make sweet vial treasure thou place beautys treasure ere selfkilld forbidden usury happies pay willing loan thats thy self breed another thee ten times happier ten ten times thy self happier thou art ten thine ten times refigurd thee death thou shouldst depart leaving thee living posterity selfwilld thou art fair deaths conquest make worms thine heir
 64 tokens: lo orient gracious light lifts up burning head eye doth homage newappearing sight serving looks sacred majesty climbd steepup heavenly hill resembling strong youth middle age yet mortal looks adore beauty still attending golden pilgrimage highmost pitch weary car like feeble age reeleth day eyes fore duteous converted low tract look another way thou thyself outgoing thy noon unlookd diest unless thou get son
 70 tokens: music hear why hearst thou music sadly sweets sweets war joy delights joy why lovst thou thou receivst gladly else receivst pleasure thine annoy true concord welltuned sounds unions married offend thine ear sweetly chide thee confounds singleness parts thou shouldst bear mark string sweet husband another strikes mutual ordering resembling sire child happy mother pleasing note sing whose speechless song many seeming sings thee thou single wilt prove none
 70 tokens: fear wet widows eye thou consumst thy self single life ah thou issueless shalt hap die world wail thee like makeless wife world thy widow still weep thou form thee hast left behind every private widow well keep childrens eyes husbands shape mind look unthrift world doth spend shifts place still world enjoys beautys waste hath world end kept unused user destroys love toward others bosom sits murdrous shame commits
 69 tokens: shame deny thou bearst love thy self art unprovident grant thou wilt thou art belovd many thou none lovst evident thou art possessd murderous hate gainst thy self thou stickst conspire seeking beauteous roof ruinate repair thy chief desire o change thy thought change mind shall hate fairer lodgd gentle love thy presence gracious kind thyself least kindhearted prove make thee another self love beauty still live thine thee

Create a word encoding.

1 Functions — Alphabetical List

1-446

enc = wordEncoding(documents)

enc =
 wordEncoding with properties:

 NumWords: 3092
 Vocabulary: [1x3092 string]

Map the words "rose", "love", and "beauty" to encoding indices using the word2ind
function.

words = ["rose" "love" "beauty"];
idx = word2ind(enc,words)

idx = 1×3

 7 387 79

Convert Documents to Sequences of Word Indices

Load the weather reports data and create a tokenizedDocument array.

filename = "weatherReports.csv";
data = readtable(filename,'TextType','string');
textData = data.event_narrative;
documents = tokenizedDocument(textData);

Create a word encoding.

enc = wordEncoding(documents);

Convert the documents to sequences of word indices.

sequences = doc2sequence(enc,documents);

View the sizes of the first 10 sequences. Each sequence is a 1-by-S vector, where S is the
number of word indices in the sequence. Because the sequences are padded, S is
constant.

sequences(1:10)

ans = 10x1 cell array
 {1x930 double}

 wordEncoding

1-447

 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}
 {1x930 double}

See Also
doc2sequence | fastTextWordEmbedding | ind2word | isVocabularyWord |
tokenizedDocument | word2ind | wordEmbedding | wordEmbeddingLayer

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2018b

1 Functions — Alphabetical List

1-448

writeTextDocument
Write documents to text file

Syntax
writeTextDocument(documents,filename)
writeTextDocument(documents,filename,'Append',true)

Description
writeTextDocument(documents,filename) writes documents to the specified text
file. The function writes one document per line with a space between each word in UTF-8.

writeTextDocument(documents,filename,'Append',true) appends to the file
instead of overwriting.

Examples

Write Documents to Text File

Write an array of documents to a text file.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

filename = "documents.txt";
writeTextDocument(documents,filename)

 writeTextDocument

1-449

Append Documents to Text File

Write an array of documents to a text file by appending the documents one at a time.

Create an array of tokenized documents.

documents = tokenizedDocument([
 "an example of a short sentence"
 "a second short sentence"])

documents =
 2x1 tokenizedDocument:

 6 tokens: an example of a short sentence
 4 tokens: a second short sentence

Write the first document to the file.

filename = "documents.txt";
writeTextDocument(documents(1),filename)

View the contents of the file using extractFileText.

str = extractFileText(filename)

str =
"an example of a short sentence"

Append the second document to the text file.

writeTextDocument(documents(2),filename,'Append',true)

View the contents of the file using extractFileText.

str = extractFileText(filename)

str =
 "an example of a short sentence
 a second short sentence"

1 Functions — Alphabetical List

1-450

Input Arguments
documents — Input documents
tokenizedDocument array

Input documents, specified as a tokenizedDocument array.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

See Also
extractFileText | extractHTMLText | readPDFFormData | tokenizedDocument

Topics
“Extract Text Data from Files”
“Prepare Text Data for Analysis”
“Create Simple Text Model for Classification”

Introduced in R2017b

 writeTextDocument

1-451

writeWordEmbedding
Write word embedding file

Syntax
writeWordEmbedding(emb,filename)

Description
writeWordEmbedding(emb,filename) writes the word embedding emb to the file
filename. The function writes the vocabulary in UTF-8 in word2vec text format.

Examples

Write Word Embedding to File

Train a word embedding and write it to a text file.

Load the example data. The file sonnetsPreprocessed.txt contains preprocessed
versions of Shakespeare's sonnets. The file contains one sonnet per line, with words
separated by a space. Extract the text from sonnetsPreprocessed.txt, split the text
into documents at newline characters, and then tokenize the documents.

filename = "sonnetsPreprocessed.txt";
str = extractFileText(filename);
textData = split(str,newline);
documents = tokenizedDocument(textData);

Train a word embedding using trainWordEmbedding.

emb = trainWordEmbedding(documents)

Training: 100% Loss: 0 Remaining time: 0 hours 0 minutes.

emb =
 wordEmbedding with properties:

1 Functions — Alphabetical List

1-452

 Dimension: 100
 Vocabulary: [1x401 string]

Write the word embedding to a text file.

filename = "exampleSonnetsEmbedding.vec";
writeWordEmbedding(emb,filename)

Read the word embedding file using readWordEmbedding.

emb = readWordEmbedding(filename)

emb =
 wordEmbedding with properties:

 Dimension: 100
 Vocabulary: [1x401 string]

Input Arguments
emb — Input word embedding
wordEmbedding object

Input word embedding, specified as a wordEmbedding object.

filename — Name of file
string scalar | character vector

Name of the file, specified as a string scalar or character vector.
Data Types: string | char

See Also
doc2sequence | fastTextWordEmbedding | readWordEmbedding |
tokenizedDocument | trainWordEmbedding | vec2word | word2vec |
wordEmbedding | wordEmbeddingLayer | wordEncoding

 writeWordEmbedding

1-453

Topics
“Train a Sentiment Classifier”
“Classify Text Data Using Deep Learning”
“Visualize Word Embeddings Using Text Scatter Plots”
“Prepare Text Data for Analysis”

Introduced in R2017b

1 Functions — Alphabetical List

1-454

